首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cannabinoid compounds, including the major psychoactive component of marihuana, delta 9-tetrahydrocannabinol (delta 9-THC), have been widely established as being inhibitory on a broad array of humoral and cell-mediated immune responses. The presence of cannabinoid receptors has been identified recently on mouse spleen cells, which possess structural and functional characteristics similar to those of the G-protein coupled cannabinoid receptor originally identified in rat brain. These findings, together with those demonstrating that delta 9-THC inhibits adenylate cyclase in splenocytes, strongly suggest that certain aspects of immune inhibition by cannabinoids may be mediated through a cannabinoid receptor-associated mechanism. The objective of the present studies was to determine whether inhibition of adenylate cyclase is relevant to mouse spleen cell immune function and, if so, whether this inhibition is mediated through a Gi-protein coupled mechanism as previously described in neuronal tissue. Spleen cell activation by the phorbol ester phorbol-12-myristate-13-acetate (PMA), plus the calcium ionophore ionomycin, produced a rapid but transient increase in cytosolic cAMP, which was inhibited completely by immunosuppressive concentrations of delta 9-THC (22 microM) and the synthetic bicyclic cannabinoid CP-55940 (5.2 microM), which produced no effect on cell viability. Inhibition by cannabinoids of lymphocyte proliferative responses to PMA plus ionomycin and sheep erythrocyte (sRBC) IgM antibody-forming cell (AFC) response, was abrogated completely by low concentrations of dibutyryl-cAMP (10-100 microM). Inhibition of the sRBC AFC response by both delta 9-THC (22 microM) and CP-55940 (5.2 microM) was also abrogated by preincubation of splenocytes for 24 hr with pertussis toxin (0.1-100 ng/mL). Pertussis toxin pretreatment of spleen cells was also found to directly abrogate cannabinoid inhibition of adenylate cyclase, as measured by forskolin-stimulated accumulation of intracellular cAMP. These results indicate that inhibition of the sRBC AFC response by cannabinoids is mediated, at least in part, by inhibition of adenylate cyclase through a pertussis toxin-sensitive Gi-protein coupled cannabinoid receptor. Additionally, these studies further support the premise that cAMP is an important mediator of lymphocyte activation.  相似文献   

2.
Desensitization of G-protein coupled receptors limits the physiologic effects of an agonist. Short-term desensitization mechanisms are critically dependent on receptor phosphorylation by protein kinases. The effectiveness of these regulatory mechanisms might be limited by substrate (receptor) availability. To investigate the role of receptor number in the desensitization of G-protein coupled receptors, we transfected a mouse mesangial cell line with a genomic clone encoding the mouse thromboxane A2 (TxA2) receptor and obtained cell lines that expressed low (approximately 250-500 fmol/mg protein) or high (2500-4000 fmol/mg protein) levels of TxA2 receptors. Activation of TxA2 receptors stimulated phosphoinositide (PI) hydrolysis and increased intracellular calcium ([Ca2+]i) levels. Prior exposure to the TxA2 agonist (15S)-hydroxy-11alpha,9alpha-(epoxymethano)prosta-5Z,+ ++13E-dienoic acid (U46619) reduced subsequent (15S)-hydroxy- 11alpha,9alpha-(epoxymethano)prosta-5Z,13E-dieno ic acid-induced increases in inositol trisphosphates and intracellular calcium levels by approximately 50% in clones expressing low numbers of TxA2 receptors, but had little effect on TxA2 receptor responsiveness in clones expressing high receptor numbers. Failure of TxA2 receptors to desensitize caused sustained increases in intracellular calcium levels and phosphoinositide hydrolysis. Thus, homologous desensitization of TxA2 receptors is attenuated in cells expressing high levels of receptors for TxA2. These data suggest that receptor number plays a key role in the short-term regulation of G-protein coupled receptors.  相似文献   

3.
A large body of evidence indicates that experimental agents which raise cellular cAMP levels inhibit T cell growth and division. By contrast, many studies have reported that mitogen activation of T cells increases cAMP levels, implying a positive physiological role for cAMP in the activation process. In the present study we demonstrate that mitogen activation of human peripheral T lymphocytes induces nuclear factors that form complexes with cyclic AMP response element-binding protein (CREB). Four complexes are identified by the electrophoretic mobility shift assay, two of which are induced by mitogen activation. All four complexes contain CREB and are bound to the cAMP response element (CRE) core sequence (TGACGTCA), as indicated by antibody and oligonucleotide competition experiments. Binding of the four complexes to CRE is prevented by dephosphorylation of nuclear extracts and is restored by rephosphorylation with cAMP-dependent protein kinase or endogenous kinases. Similar complexes are detected in nuclear extracts of Jurkat cells. Mitogen induction of the electrophoretic mobility shift assay complexes is not accounted for by protein phosphorylation or by induction of CREB. Rather, the data indicate that mitogen increases the levels of a nuclear factor(s) that dimerizes with CREB. Induction of new CREB complexes implies a physiological role for cAMP in mitogen activation of T lymphocytes.  相似文献   

4.
A human prostate cancer cell line (PC3) with abundant neurotensin (NT) receptors was used to demonstrate that NT potentiated 3',5'-cyclic adenosine monophate (cAMP) accumulation in response to a variety of stimuli, including both direct forskolin (F) and indirect (prostaglandin, (PGE2), isoproterenol (ISO) and cholera toxin (CTx)) activators of adenylyl cyclase. Several mechanisms were investigated and our results indicated an effect on the rate of cAMP formation and not on degradation or extrusion. For each stimulus, NT enhanced efficacy without altering EC50. The effect of NT did not involve stimulatory G-protein (Gs)-activation or interference with a tonic inhibitory G-protein (Gi)-mediated inhibition. A similar response was obtained when NT was added with the stimulus or given as a two minute pulse which was removed prior to addition of stimulus. The potentiating activity disappeared with a t1,2 of approximately 15 min. NT transiently elevated cellular [Ca2+]i and its effects on cAMP could be mimicked by [Ca2+]i-elevating agents (uridine triphosphate (UTP), thapsigargin and ionomycin). Buffering cellular [Ca2+]i with 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM) inhibited cAMP responses to ISO and F in presence and absence of NT. These data support the idea that NT potentiated cAMP formation in response to a variety of stimuli by facilitating the activation of Ca2+ -dependent adenylyl cyclases.  相似文献   

5.
6.
Neuropeptide Y (NPY) has been shown to inhibit insulin secretion from the islets of Langerhans. We show that insulin secretion in the insulinoma cell line RIN 5AH is inhibited by NPY. 125I-Peptide YY (PYY) saturation and competition-binding studies using NPY fragments and analogues on membranes prepared from this cell line show the presence of a single class of NPY receptor with a Y1 receptor subtype-like profile. Inhibition of insulin secretion in this cell line by NPY fragments and analogues also shows a Y1 receptor-like profile. Both receptor binding and inhibition of insulin secretion showed the same orders of potency with NPY > [Pro34]-NPY > NPY 3-36 > NPY 13-36. The Y1 receptor antagonist, BIBP 3226, blocks NPY inhibition of insulin secretion from, and inhibits 125I-PYY binding to, RIN 5AH cells. Northern blot analysis using a Y1-receptor specific probe shows that NPY Y1 receptors are expressed by RIN 5AH cells. Y5 receptors are not expressed in this cell line. Neuropeptide Y inhibition of insulin secretion is blocked by incubation with pertussis toxin, implying that the effect is via a G-protein (Gi or Go) coupled receptor. Neuropeptide Y inhibits the activation of adenylyl cyclase by isoprenaline in RIN 5AH cell lysates, and the stimulation of cAMP by glucagon-like peptide-1 (7-36) amide (GLP-1). It also blocks insulin secretion stimulated by GLP-1, but not by dibutyryl cyclic AMP. Hence, we suggest that NPY inhibits insulin secretion from RIN 5AH cells via a Y1 receptor linked through Gi to the inhibition of adenylyl cyclase.  相似文献   

7.
We have previously demonstrated that nitric oxide (NO)-generating compounds inhibit D. discoideum differentiation by preventing the initiation of cAMP pulses (Tao, Y., Howlett, A. and Klein, C. (1996) Cell. Signal. 8, 37-43). In the present study, we demonstrate that cells produce NO at a relatively constant rate during the initial phase of their developmental cycle. The addition of oxyhemoglobin, an NO scavenger, stimulates cell aggregation, suggesting that NO has a negative effect on the development of aggregation competence. Starvation of cells in the presence of glucose, which has been shown to prevent the initiation of cAMP pulses (Darmon, M. and Klein, C. (1978) Dev. Biol. 63, 377-389), results in an increased production of NO. The inhibition of cell aggregation by glucose treatment can be reversed by oxyhemoglobin. These findings indicate that NO is a signaling molecule for D. discoideum cells and that physiological or environmental conditions that enhance external NO levels will delay the initiation of cAMP pulses, which are essential for cell differentiation.  相似文献   

8.
CRH is the principal mediator of the stress response in mammals. In addition to pituitary and central nervous system effects, peripheral effects of CRH have been observed involving the immune and cardiovascular systems. Two CRH receptor subtypes, CRH-R1 and CRH-R2, have been cloned and show significant amino acid homology (69%), but differ in their tissue distribution. CRH-R1 is expressed predominantly in the brain and pituitary, whereas the CRH-R2 subtype is highly expressed in heart and skeletal muscle. To investigate the role of CRH in cardiac signaling, we analyzed the effect of CRH on freshly isolated neonatal rat cardiomyocytes and murine atrial cardiomyocyte tumor cells, AT-1, which express CRH-R2 messenger RNA. We show that stimulation of these cells with CRH and the CRH-related peptides, sauvagine from frog and urotensin I from fish, elicits large increases in the intracellular level of cAMP. This stimulation is transient, reaching a maximum in 5-15 min in neonatal cardiomyocytes and in 2-4 min in AT-1 cells, followed by a rapid decline. We show that stimulation of AT-1 cells by these peptides is specific for CRH receptors, as the CRH antagonist, alpha-helical CRH-(9-41) inhibits cAMP increases. Furthermore, we show that CRH, sauvagine, and urotensin I stimulations are dose dependent in both neonatal cardiomyocytes and AT-1 cells. Sauvagine and urotensin I are more potent than CRH at stimulating an increase in intracellular cAMP in neonatal cardiomyocytes (EC50 = 1.74, 2.61, 6.42 nM, respectively) and AT-1 cells (EC50 = 16.2, 15.8, and 149 nM, respectively). This rank order is consistent with that previously demonstrated in CRH-R2-transfected HEK293 cells and parallels the in vivo vasodilatory activity of these peptides. In summary, this is the first evidence that CRH, sauvagine, and urotensin I act directly on cardiac myocytes to stimulate increases in intracellular cAMP, presumably through CRH-R2. In addition, these results indicate that cardiac myocytes may be an informative in vitro model to investigate the effects of CRH and its role in the cardiovascular response to stress.  相似文献   

9.
We examined the contribution of specific EP receptors in regulating cell growth. By RT-PCR and northern hybridization, adult human keratinocytes express mRNA for three PGE2 receptor subtypes associated with cAMP signaling (EP2, EP3, and small amounts of EP4). In actively growing, non-confluent primary keratinocyte cultures, the EP2 and EP4 selective agonists, 11-deoxy PGE1 and 1-OH PGE1, caused complete reversal of indomethacin-induced growth inhibition. The EP3/EP2 agonist (misoprostol), and the EP1/EP2 agonist (17-phenyl trinor PGE2), showed less activity. Similar results were obtained with agonist-induced cAMP formation. The ability of exogenous dibutyryl cAMP to completely reverse indomethacin-induced growth inhibition support the conclusion that growth stimulation occurs via an EP2 and/or EP4 receptor-adenylyl cyclase coupled response. In contrast, activation of EP3 receptors by sulprostone, which is virtually devoid of agonist activity at EP2 or EP4 receptors, inhibited bromodeoxyuridine uptake in indomethacin-treated cells up to 30%. Although human EP3 receptor variants have been shown in other cell types to markedly inhibit cAMP formation via a pertussis toxin sensitive mechanisms, EP3 receptor activation and presumably growth inhibition was independent of adenylyl cyclase, suggesting activation of other signaling pathways.  相似文献   

10.
Several signal transduction pathways have been implicated in the mechanism of protection induced by ischemic preconditioning (PC). For example, stimulation of a variety of G-protein coupled receptors results in stimulation of protein kinase C (PKC) which has been suggested to act as common denominator in eliciting protection. PC also significantly attenuated cAMP accumulation during sustained ischemia, suggesting involvement of an anti-adrenergic mechanism. The aim of this study was to evaluate the beta-adrenergic signal transduction pathway (as evidenced by changes in tissue cAMP and cAMP- and cGMP-phosphodiesterase) during the PC protocol as well as during sustained ischemia. Isolated perfused rat hearts were preconditioned by 3 x 5 min global ischemia (PC1,2,3) interspersed by 5 min reperfusion, followed by 25 min global ischemia. Tissue cAMP- and cGMP-PDE activity as well as cAMP and cGMP levels were determined at different time intervals during the PC protocol and sustained ischemia. Tissue cAMP increased with each PC ischemic event and normalized upon reperfusion, while PDE activity showed the opposite, viz a reduction during ischemia and an increase during reperfusion. Except for PC1, tissue cGMP showed similar fluctuations. Throughout 25 min sustained ischemia, cAMP- and cGMP-PDE activities were higher in PC than in nonpreconditioned hearts, associated with a significantly lesser accumulation in cAMP and higher cGMP levels in the former. Fluctuations in cyclic nucleotides during preconditioning were associated with concomitant changes in PDE activity, while the attenuated beta-adrenergic response of preconditioned hearts during sustained ischemia may partially be due to increased PDE activity.  相似文献   

11.
We describe the reconstitution and purification of a membrane-associated phosphoinositide-specific phospholipase C (PIC) from turkey erythrocyte ghosts. This PIC is responsive to a G-protein coupled to P2y purinergic receptors which are expressed in turkey erythrocytes. Reconstitution is achieved by adding partially purified PIC to [3H]inositol-prelabelled turkey erythrocyte membranes depleted of their endogenous PIC (acceptor membranes). PIC activity is associated with a 52 kDa polypeptide on SDS-polyacrylamide gel electrophoresis. Addition of a 307-fold purified enzyme to the acceptor membranes has no effect on basal PIC activity, but markedly increases the response to GTP gamma S and P2y-purinergic receptor activation.  相似文献   

12.
OBJECTIVE: Construction of constitutively active mutants of the GnRH receptor, a member of the G-protein coupled receptor superfamily, would facilitate investigation of the mechanism of receptor activation. DESIGN: Point mutations were introduced in the human GnRH receptor in positions corresponding to those which caused constitutive activity in other G-protein coupled receptors. The effects of these mutations on ligand binding, receptor intracellular signaling and receptor expression were determined. METHODS: Wild type and mutated receptor cDNAs were expressed in COS-1 cells. Basal and agonist-stimulated inositol phosphate production and ligand binding were determined. In addition, receptor mRNA levels, cell surface receptor stability and rate of internalization were measured. RESULTS AND CONCLUSIONS: Although none of the mutant receptors exhibited constitutive activity, mutation of Phe-2 72 in transmembrane helix VI to Leu increased cell surface receptor numbers, with unchanged affinities for radiolabeled agonist, superagonist and antagonist peptides compared with wild type receptor. The cell surface receptor stability and rate of internalization were similar for wild type and F272L GnRH receptors. Thus a single amino acid mutation in transmembrane helix VI causes an increase in cell surface receptor numbers, which appears to result from an increased rate of receptor protein translation, processing or insertion into membranes.  相似文献   

13.
The Dictyostelium MAP kinase ERK2 is activated by extracellular cAMP in aggregation-competent cells and is required for receptor activation of adenylyl cyclase (Maeda, M., Aubry, L., Insall, R., Gaskins, C., Devreotes, P. N., and Firtel, R. A. (1996) J. Biol. Chem. 271, 3351-3354; Segall, J., Kuspa, A., Shaulsky, G., Ecke, M., Maeda, M., Gaskins, C., Firtel, R., and Loomis, W. (1995) J. Cell Biol. 128, 405-413). This cAMP-dependent activation of ERK2 is mediated by the serpentine, G protein-coupled cAMP receptors. However, ERK2 activation by cAMP is at least partially heterotrimeric G protein-independent, with a level of activation in cells lacking the sole Gbeta subunit or the G protein-coupled cAMP receptors-coupled Galpha2 subunit that is approximately 50% that of wild-type cells (Maeda, M., Aubry, L., Insall, R., Gaskins, C., Devreotes, P. N., and Firtel, R. A. (1996) J. Biol. Chem. 271, 3351-3354; Segall, J., Kuspa, A., Shaulsky, G., Ecke, M., Maeda, M., Gaskins, C., Firtel, R., and Loomis, W. (1995) J. Cell Biol. 128, 405-413). Folic acid, a chemoattractant in the vegetative cells that enables amoebae to find bacteria in the wild, also triggers the activation of adenylyl cyclase, which is impaired in the vegetative cells lacking the Galpha protein subunit Galpha4 (Hadwiger, J., Lee, S., and Firtel, R. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 10566-10570). In this study, we show that folic acid activates ERK2 in developmentally regulated manner and is required for ERK2 stimulation of adenylyl cyclase activity. Maximum levels of folate-stimulated ERK2 activity occur in cells from very early in development, prior to aggregation, and again at the tipped aggregate stages, corresponding to the stages in which folate receptors and the coupled Galpha subunit Galpha4 are maximally expressed. During the activation by folic acid, ERK2 is phosphorylated on tyrosine residue(s) and contemporaneously shows a mobility shift on SDS-PAGE. Interestingly, this activation is not elicited in the absence of Gbeta subunits, in contrast to the response to cAMP. This response also requires the Galpha4 subunit known to be required for other folic acid-mediated responses (Hadwiger, J., Lee, S., and Firtel, R. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 10566-10570). Furthermore, we show that the activation of ERK2 by cAMP is independent of the Galpha4 subunit, while the activation of ERK2 by folate is independent of Galpha2. Taken together, these data indicate that there are at least two pathways of ERK2 activation, heterotrimeric G protein-dependent and -independent pathways.  相似文献   

14.
15.
Neuropeptide FF (NPFF) receptors have been characterized in mouse olfactory bulb membranes by using [125I][1DMe]Y8Fa. The specific binding of this NPFF analogue was time and concentration dependent, reversible, saturable, and of high affinity (Kd = 0.022 nM, Bmax = 56.4 fmol/mg protein). In olfactory bulb membranes, NaCl increased the affinity of [125I][1DMe]Y8Fa by decreasing the dissociation rate constant (k-1). In contrast, the nonhydrolyzable analogue of GTP, Gpp[NH]p, decreased the maximal number of binding sites suggesting a coupling of NPFF receptors to a G-protein. In mouse olfactory bulb and spinal cord membranes, NPFF analogues stimulated adenylate cyclase activity in a time- and dose-dependent manner, whereas in the cerebellum, which does not possess NPFF receptors, low cAMP production was stimulated by NPFF. Our data are consistent with guanine nucleotide binding protein regulation of NPFF receptors positively coupled to adenylate cyclase.  相似文献   

16.
We have recently cloned CTRs from cDNA libraries prepared from porcine renal and human ovarian cell lines. In situ hybridization and Northern analysis confirm the widespread distribution of CTR mRNA in numerous tissues. Hydropathy plots of the predicted amino acid sequence of the receptors demonstrate multiple hydrophobic regions that could generate 7 transmembrane spanning domains, similar to other G protein-coupled receptors. Searches of databanks for proteins with related amino acid sequences reveals that the CTRs are closely related to the receptors for parathyroid hormone/parathyroid hormone related peptide, secretin, vasoactive intestinal peptide, growth hormone releasing hormone, glucagon-like peptide-1 and glucagon. These receptors have no significant sequence homology to other G protein-coupled receptors, and therefore, appear to comprise a distinct receptor family. Expression of the hCTR or pCTR in COS cells results in expression of high affinity CTRs which are coupled to adenylate cyclase (AC). The hCTR, however, demonstrates higher affinity for human and salmon CT compared to the pCTR. Both CTRs demonstrate low affinity binding and AC activation in response to calcitonin gene related peptide, amylin or secretin, providing a possible explanation for the cross-reactivity among these peptides in vivo. Stable transfectants expressing the pCTR increase cAMP levels and increases in cytosolic free Ca2+ concentration consistent with dual coupling to AC and phospholipase C. Additional studies will help to establish the structural basis for this functional property as well as the evolutionary relationship of the members of this newly identified family of receptors.  相似文献   

17.
Prostaglandin (PG) and thromboxane (TX) receptors are G-protein coupled receptors that mediate the physiological actions of the five principal prostanoid metabolites: PGD2, PGE2, PGF2alpha, PGI2 (prostacyclin) and TXA2. Five major subdivisions of the prostanoid receptor family have been defined pharmacologically which correspond to each of the metabolites as follows: DP, EP, FP IP and TP. The EP receptors have been further classified pharmacologically into the EP1, EP2, EP3 and EP4 subtypes. Molecular biological studies have resulted in the cloning of cDNA's encoding all of these prostanoid receptors. In addition, the cloning of these receptors has revealed further heterogeneity through the use of alternative mRNA splicing. Specifically, mRNA splice variants have been identified for the EP1, EP3, FP and TP receptors. Interestingly, except for the EP1 receptors, the mechanisms giving rise to these receptor isoforms involves the use of splice sites located in the cytoplasmic carboxyl termini of these receptors. Thus, the eight human EP3 isoforms that have been identified are otherwise identical except for their carboxyl termini. Similarly, the optional use of a potential splice site encoding the carboxyl terminus gives rise to each of the two FP and TP receptor isoforms. Because the carboxyl termini of G-protein coupled receptors are generally implicated in interactions with G-proteins, it is not surprising that these receptor isoforms differ mainly with respect to their activation of second messenger pathways and not in their pharmacological characteristics. Differences also exist with respect to their levels of constitutive activity (e.g., in the absence of agonist) and in their desensitization.  相似文献   

18.
We have characterized the expression pattern and pharmacological profile of activation of metabotropic glutamate receptors (mGluRs) in immortalized, gonadotropin releasing hormone (GnRH)-secreting GT1-7 cells, which represent a homogeneous cellular population of hypothalamic origin. These cells are known to respond to the mGluR agonist (1S,3R)-cyclopentanedicarboxylic acid (1S,3R-ACPD) with increased GnRH release. To establish which specific mGluR subtypes are expressed by GT1-7 cells, we used polyclonal antibodies raised against non-conserved regions of the carboxy-terminal domains of individual subtypes. The selectivity of these antibodies was tested in HEK 293 cells transiently transfected with each mGluR subtype. GT1-7 cells stained positively for the subtypes mGluR1a, -1b and -5 (belonging to group I mGluR2/3 (group II) and mGluR7 (group III). Agonists of group I mGluRs, including 1S,3R-ACPD, activated phosphoinositide hydrolysis in GT1-7 cells. This effect, however, was manifested only when cell density was low, and it disappeared when cells reached confluence. Stimulation of phosphoinositide hydrolysis could not therefore have been related to hormone secretion because 1S,3R-ACPD effectively released GnRH in confluent cultures. We then focused on group II and III mGluRs, which in transfected cells are negatively linked to adenylate cyclase activity. Unexpectedly, however, agonist which preferentially activate group II and III mGluRs increased both basal and forskolin-stimulated cAMP accumulation in GT1-7 cells. Stimulation of cAMP accumulation by mGluR agonists was not prevented by enzymatic depletion of endogenous adenosine, but was obliterated when cells were incubated with agonists of receptors positively coupled to adenylate cyclase, such as beta-adrenergic and prostaglandin E2 receptors. These results suggest that GT1-7 cells express a novel mGluR subtype positively coupled to adenylate cyclase, which shares the same transduction pathway of other classical receptors coupled with a Gs-type of GTP-binding protein.  相似文献   

19.
The beta-chemokine macrophage inflammatory protein-1alpha (MIP-1alpha) is chemotactic for many hemopoietic cell types and can inhibit hemopoietic stem cell (HSC) proliferation, effects mediated through G-protein coupled heptahelical receptors. We have isolated cDNAs for seven chemokine receptors, CCR-1 to -5, MIP-1alphaRL1, and a novel cDNA, D6. Chinese hamster ovary cells expressing CCR-1, -3, -5, and D6 bound 125I-murine MIP-1alpha: the order of affinity was D6 > CCR-5 > CCR-1 > CCR-3. Each bound a distinct subset of other beta-chemokines: the order of competition for 125I-murine MIP-1alpha on D6 was murine MIP-1alpha > human and murine MIP-1beta > human RANTES approximately JE > human MCP-3 > human MCP-1. Human MIP-1alpha and the alpha-chemokines did not compete. Like other chemokine receptors, D6 induced transient increases in [Ca2+] in HEK 293 cells upon ligand binding. D6 mRNA was abundant in lung and detectable in many other tissues. Bone marrow cell fractionation demonstrated T-cell and macrophage/monocyte expression of D6, and CCR-1, -3, and -5. Moreover, we could detect expression of CCR-3, CCR-5, and to a greater extent D6 in a cell population enriched for HSCs. Thus, we have characterized four murine beta chemokine receptors that are likely involved in mediating the pro-inflammatory functions of MIP-1alpha and other chemokines, and we present D6, CCR-3, and CCR-5 as candidate receptors in MIP-1alpha-induced HSC inhibition.  相似文献   

20.
The small GTP-binding protein Ras and heterotrimeric G-proteins are key regulators of growth and development in eukaryotic cells. In mammalian cells, Ras functions to regulate the mitogen-activated protein kinase pathway in response to growth factors, whereas many heterotrimeric GTP-binding protein alpha-subunits modulate cAMP levels through adenylyl cyclase as a consequence of hormonal action. In contrast, in the yeast Saccharomyces cerevisiae, it is the Ras1 and Ras2 proteins that regulate adenylyl cyclase. Of the two yeast G-protein alpha-subunits (GPA1 and GPA2), only GPA1 has been well studied and shown to negatively regulate the mitogen-activated protein kinase pathway upon pheromone stimulation. In this report, we show that deletion of the GPA2 gene encoding the other yeast G-protein alpha-subunit leads to a defect in pseudohyphal development. Also, the GPA2 gene is indispensable for normal growth in the absence of Ras2p. Both of these phenotypes can be rescued by deletion of the PDE2 gene product, which inactivates cAMP by cleavage, suggesting that these phenotypes can be attributed to low levels of intracellular cAMP. In support of this notion, addition of exogenous cAMP to the growth media was also sufficient to rescue the phenotype of a GPA2 deletion strain. Taken together, our results directly demonstrate that a G-protein alpha-subunit can regulate the growth and pseudohyphal development of S. cerevisiae via a cAMP-dependent mechanism. Heterologous expression of mammalian G-protein alpha-subunits in these yeast GPA2 deletion strains could provide a valuable tool for the mutational analysis of mammalian G-protein function in an in vivo null setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号