首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
碳纤维表面处理对层间剪切断裂形貌的影响   总被引:7,自引:0,他引:7  
用气相氧化法对碳纤维进行表面处理,可使碳纤维复合材料(CFRP)的层间剪切强度(ILSS)提高40%-76%,这归因于纤维表面增加了化学官能团和比表面积,同时,由于碳纤维(CF)与基体之间粘接得到改善,使单向(UD)-CFRP的剪切断裂形貌变为拉剪,这可用扫描电子显微镜(SEM)观察剪断形貌得到证实。  相似文献   

2.
碳纤维表面电化学氧化的研究   总被引:13,自引:2,他引:11  
刘杰  郭云霞  梁节英 《化工进展》2004,23(3):282-285
主要采用电化学氧化法对聚丙烯腈(PAN)基碳纤维进行连续氧化处理,利用扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和动态力学热分析(DMTA)对碳纤维表面处理效果进行了研究。SEM表面形貌研究结果表明,碳纤维经电化学氧化处理后,其表面的粗糙度和比表面积增大。XPS表面化学分析表明,经电化学氧化处理后的碳纤维表面羟基含量提高55%,活性碳原子数增加18%。DMTA谱图表明经电化学氧化处理的碳纤维增强树脂基复合材料(CFRP)其玻璃化温度(Tg)提高5℃、损耗角正切(tanδ)较未处理的降低30%。定量计算出的界面黏结参数A和α与CHRP的层间剪切强度(ILSS)所反映的碳纤维与树脂间界面黏结效果是一致的。研究结果表明,采用适当的处理条件可使CFRP的ILSS提高20%以上。  相似文献   

3.
用SEM研究CFRP的界面效应   总被引:3,自引:0,他引:3  
用气相氧化法对碳纤维进行表面处理,可使层间剪切强度(ILSS)提高40~76%。这归因于增加了碳纤维的表面积和表面化学官能团的浓度。同时,碳纤维增强塑料(CFRP)的剪切断裂形态也由未处理的多剪断裂变为处理后的抗剪断裂。用扫描电子显微镜(SEM)观察剪切断面已证实了这个问题。  相似文献   

4.
采用臭氧氧化的方法对碳纤维进行表面改性,并用作热塑性聚酰亚胺树脂的增强体。采用单丝拉伸试验、XPS研究臭氧处理时间对碳纤维单丝拉伸强度和表面官能团的影响。结果表明,臭氧处理时间越长,碳纤维力学性能的下降程度越大,而表面含氧官能团含量越多。优选单丝拉伸强度保留率较高、含氧官能团含量较丰富的碳纤维与热塑性聚酰亚胺制成复合材料,并评价其层间剪切强度(ILSS)。结果表明,臭氧处理5 min就可使碳纤维/聚酰亚胺复合材料的ILSS提升43%,说明臭氧处理可显著提升碳纤维/热塑性聚酰亚胺的界面性能。  相似文献   

5.
采用二氧化碳超临界(scCO2)处理碳纤维(CF)表面的方法,研究了粗糙度对碳纤维/聚芳基乙炔(PAA)树脂复合材料界面性能的影响.处理前后的碳纤维通过XPS,AFM和表面能测量进行了表征.CF/PAA复合材料的界面力学性能通过层间剪切强度测试(ILSS)与断口形貌分析进行了评价.结果表明,scCO2处理前后碳纤维表面的化学组成基本上没有变化.随着碳纤维表面粗糙度的增加,CF/PAA复合材料的界面力学性能先增加后减小.其中粗糙度范围为30~45 nm的样品有最高的ILSS值,43.36MPa,比未处理的样品提高了44%.对复合材料的ILSS提高起主要作用的因素是碳纤维与PAA树脂的界面齿合作用.而齿合作用程度的不同主要是由于不同粗糙度而引起的碳纤维表面物理状态的不同.  相似文献   

6.
臭氧处理对碳纤维表面及其复合材料性能的影响   总被引:6,自引:0,他引:6  
利用X射线光电子能谱(XPS)研究了碳纤维经臭氧(O3)氧化处理后表面元素组成及表面官能团的变化,结果发现,O3表面处理主要增加了碳纤维表面上的羟基或醚基官能团;研究了表面O3氧化处理对复合材料力学性能的影响,结果表明,碳纤维经O3氧化处理后明显改善了碳纤维与环氧树脂间的界面粘结,其复合材料的层间剪切强度明显提高。  相似文献   

7.
以国产聚丙烯腈基(PAN)高强中模型碳纤维为研究对象,采用X射线光电子能谱(XPS)、表面动态接触角测量仪、扫描电镜(SEM)等手段,表征分析其表面活性与力学性能,同时考察了不同表面状态碳纤维复合材料的层间剪切性能。研究结果表明,电流密度对纤维表面元素含量,-OH、-C=O、-COOH官能团含量、极性自由能影响显著。当电流密度为0.23 m A/cm2时,纤维表面活性最高,极性自由能达到最大值5.5 m/Nm,层间剪切强度达到111 MPa,分别比未处理纤维提高了10倍和68.2%。  相似文献   

8.
本文报道了用连续式电化学氧化表面处理粘胶基碳纤维表面,并测定了处理后碳纤维的单丝强度、表面浸润性、表面活性官能团含量及表面形貌等表面物理化学性能.结果表明:粘胶基碳纤维经电化学氧化表面处理可以有效地在表面产生活性官能团和提高表面粗糙度,从而有效地提高表面润湿性,但经处理后单丝强度较易下降,因此需精确控制处理的条件.  相似文献   

9.
对T300碳纤维在真空环境下,在600、900、1200、1500℃进行热处理,用液硅熔渗反应法(liquid silicon infiltration,LSI)制备了不同微观组织结构的C/C-SiC复合材料。采用光电子能谱分析了热处理对纤维表面结构的影响,用光学显微镜和扫描电子显微镜对材料微观形貌进行了观察分析。采用双槽口剪切法(DNS)测试了C/C-SiC复合材料层间剪切强度(interlaminar shear strengh,ILSS),并分析了纤维热处理对材料剪切性能影响的微观机理。结果表明:碳纤维经热处理后,表面化学成分发生变化,氧含量显著降低,改变了碳纤维增强树脂基复合材料(carbon fiber reinforced resin matrix composite,CFRP)先驱体中纤维/树脂界面结合强度,从而在CFRP裂解后形成了具有不同微观结构的C/C预制体,通过液Si对不同微结构的C/C预制体进行熔渗,获得具有不同微观结构的 C/C-SiC复合材料;DNS 测试发现碳纤维热处理能够有效改善 C/C-SiC复合材料的层间剪切强度,主要是由于纤维经热处理后制备的C/C-SiC复合材料中,SiC基体相分布较均匀并包裹在碳纤维周围,导致纤维/基体界面结合强度高。经1500℃热处理纤维增强的C/C-SiC复合材料,其剪切强度为34 MPa,与未处理的相比,ILSS提高了33%。  相似文献   

10.
利用正交法研究了电化学氧化法对中间相沥青基碳纤维表面处理过程中各因素对表面处理效果的影响,获得了优化的表面处理条件。利用傅里叶变换红外光谱扫描、X射线光电子能谱分析等手段,对优化的最佳条件下的表面处理效果进行表征。实验结果表明:采用浓硝酸预处理后,再进行电化学氧化表面处理可使碳纤维复合材料的层间剪切强度(ILSS)进一步提高,可达45.324 MPa,较未经硝酸预处理而直接进行电化学氧化表面处理的碳纤维提高了24.1%,较未表面处理碳纤维提高了49.4%  相似文献   

11.
采用电子束加速器辐射接枝方法对聚丙烯腈(PAN)基碳纤维进行表面改性,研究了接枝单体种类对接枝率及其环氧树脂基复合材料力学性能的影响,分析了辐射接枝前后PAN基碳纤维的表面形貌与化学结构以及其复合材料界面断口的形貌变化。结果表明:电子束辐射接枝改性的PAN基碳纤维表面粗糙度增加,表面活性官能团增多,与树脂的机械锲合作用增强,其树脂基复合材料断口表而较为平整;乙二胺/水溶液体系是辐射接枝改性的理想溶液,在200 kGy的电子束辐射下,PAN基碳纤维表面的接枝率为6.66%,复合材料的层间剪切强度提高了45.1%。  相似文献   

12.
PAN基碳纤维阳极电解氧化表面处理的研究   总被引:3,自引:1,他引:3  
借助XPS、力学分析、SEM扫描电镜、傅立叶红外光谱 ,较系统地考察了碳纤维表面组成与结构的变化及阳极氧化表面处理对碳纤维复合材料层间剪切强度的作用与影响。结果表明 :采用碳酸氢铵为电解质对碳纤维进行阳极电解氧化表面处理后 ,其复合材料的层间剪切断裂转变为以张力断裂形式为主 ;通过适当地增加碳纤维表面的羟基含量 ,提高活性碳原子数与非活性碳原子数比 ,可有效地改善碳纤维复合材料的使用性能 ,使碳纤维层间剪切强度提高 49% ,层间剪切强度达 85 .5MPa。  相似文献   

13.
采用熔融浸渍法制备了连续碳纤维(CF)增强聚醚醚酮(PEEK)复合材料预浸带,并层压成型制备复合材料层压板。研究了成型温度、成型压力、成型时间、纤维含量等因素对复合材料层压板力学性能的影响。结果表明,在成型温度为370℃、成型压力为12 MPa、成型时间为70 min、纤维含量为61%的工艺条件下,连续CF增强PEEK复合材料层压板的力学性能达到最优值,弯曲强度和弯曲弹性模量分别达到(1 750.76±49.13)MPa和(107.54±6.35)GPa,层间剪切强度达到(100.04±6.88)MPa,缺口冲击强度为(84.44±1.54)k J/m2。随着冷却速率的增大,复合材料层压板的弯曲性能和层间剪切强度下降,而缺口冲击强度提高。SEM分析表明,复合材料层压板的界面粘结良好。  相似文献   

14.
用两种环氧树脂上浆剂对国产聚丙烯腈基碳纤维进行上浆,测试和比较了两种环氧树脂上浆剂对聚丙烯腈(PAN)基碳纤维耐磨性、与水接触角、表面能等性能以及拉伸强度、伸长率、层间剪切强度(ILSS)等力学性能的影响。上浆剂中主体成分环氧树脂相对分子质量不是影响碳纤维层间剪切强度的决定性因素。  相似文献   

15.
研究了炭纤维表面不同处理方法对复合材料力学性能的影响,采用等离子体和等离子体接枝技术对炭纤维表面进行处理后,CF/PMR-15复合材料的界面剪切强度与层间剪切强度均有所提高,随着界面状态的改善,界面剪切强度提高的幅度比层间剪切强度提高的大,本文为指导炭纤维的表面处理,评价处理效果,进一步预报复合材料的宏观性能打下了基础。  相似文献   

16.
The interfacial interactions of carbon fiber (CF)-reinforced polymer composites is a key factor affecting the overall performance of the material. In this work, we prepared a sulfonated poly(ether sulfone)–graphene oxide mixed sizing agent to modify the interface of CF/PEEK composites and improve the interfacial properties between the PEEK matrix and CF. Results showed that the mechanical and interfacial properties of CF/PEEK composites are improved by the sizing agent. Specifically, the flexural strength, flexural modulus and interlaminar shear strength of the materials reached 847.29 MPa, 63.77 GPa, and 73.17 MPa, respectively. Scanning electron microscopy confirmed markedly improved adhesion between the resin matrix and fibers. This work provides a simple and effective method for the preparation of high-performance CF/PEEK composites, which can improve the performance of composites without degrading the mechanical property of pristine CF.  相似文献   

17.
In this article, effects of electrochemical oxidation and sizing treatment of PAN‐based carbon fibers (CFs) on the tensile properties, surface characteristics, and bonding to epoxy were investigated. As found, the electrochemical oxidation improves the tensile strength of single CF by 16.0%, due to weakening the surface stress concentration and smoothing the surface structure. Further sizing treatment shows a negligible effect on the tensile strength. Both oxidation and sizing treatments significantly improve the wettability and surface energies of CFs by introducing oxygen‐containing functional groups. Microbond test was conducted to characterize the interfacial shear strength (IFSS) between a single fiber and an epoxy droplet. The oxidation treatment increases IFSS slightly, which is due to the contradictory effects of the formation of chemical bonds between the resin and CFs, and the reduced mechanical interlocking. Further sizing treatment significantly enhances IFSS from 73.6 to 81.0 MPa, due to the formation of vast chemical bonds. Furthermore, the oxidation and sizing treatment can effectively reduce the degradation of IFSS to the hygrothermal ageing for the CF/epoxy system. POLYM. COMPOS., 37:2921–2932, 2016. © 2015 Society of Plastics Engineers  相似文献   

18.
以碳酸氢铵和硫酸为电解质,采用阳极氧化表面处理法对聚丙烯腈(PAN)基碳纤维进行表面处理,对表面处理时间进行了对比研究,获取了S-酸和S-碱2个系列样品,经研究发现,碳纤维在碳酸氢铵电解质中处理时间80s时,同在硫酸电解质中处理时间为5s所取得到的拉伸强度、层间剪切强度基本相当。通过对样品的微观表面、表面官能团的分析,发现2种电解质在PAN基碳纤维表面发生的氧化反应不同,S-酸系列样品表面官能团多生成羟基和醚基,S-碱系列样品表面团多生成羰基。  相似文献   

19.
电化学氧化处理对碳纤维及EP复合材料性能的影响   总被引:1,自引:0,他引:1  
利用电化学氧化法对碳纤维(CF)进行表面改性处理,并将改性CF用于改性环氧树脂(EP),研究了CF处理前后纤维复丝拉伸强度和EP/CF复合材料的力学性能。结果表明,氧化处理改善了CF与基体的粘结性;经电化学氧化处理后CF的表面羟基含量提高39.96%,羧基/酯基含量提高141.06%,活性碳原子数增加34.28%;随着氧化电流密度的增加,CF复丝的拉伸强度和复合材料的层间剪切强度均呈现先增大后减小的变化趋势,当电流密度为0.2A/m^2时,复合材料的层间剪切强度提高31.70%。  相似文献   

20.
Novel‐fluorinated poly(etherimide)s (FPEIs) with controlled molecular weights were synthesized and characterized, which were used to toughen epoxy resins (EP/FPEI) and carbon fiber‐reinforced epoxy composites (CF/EP/FPEI). Experimental results indicated that the FPEIs possessed outstanding solubility, thermal, and mechanical properties. The thermally cured EP/FPEI resin showed obviously improved toughness with impact strength of 21.1 kJ/m2 and elongation at break of 4.6%, respectively. The EP/FPEI resin also showed outstanding mechanical strength with tensile strength of 91.5 MPa and flexural strength of 141.5 MPa, respectively. The mechanical moduli and thermal property of epoxy resins were not affected by blending with FPEIs. Furthermore, CF/EP/FPEI composite exhibited significantly improved toughness with Mode I interlaminar fracture toughness (GIC) of 899.4 J/m2 and Mode II interlaminar fracture toughness (GIIC) of 1017.8 J/m2, respectively. Flexural properties and interlaminar shear strength of the composite were slightly increased after toughening. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号