首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
详细介绍了吹气发泡法制备泡沫铝的生产工艺,并对泡沫铝结构的影响因素进行全面概述。介绍了国内外对采用吹气发泡法制备泡沫铝的研究现状,最后对吹气发泡法生产泡沫金属的发展前景做了展望。  相似文献   

2.
金属泡沫材料研究进展   总被引:14,自引:2,他引:12  
陈祥  李言祥 《材料导报》2003,17(5):5-8,11
综述了金属泡沫材料的各种制备方法。液相法制备金属泡沫材料包括气体吹入法、固体发泡剂法和固体—气体共晶凝固法、熔模铸造法、渗流铸造法、喷射沉积法以及粉末加压熔化法等制备方法。采用金属粉末烧结法、浆料发泡法等制备工艺可以从固相制备金属泡沫材料。电沉积法以及气相沉积法可用于制备高孔隙率的金属泡沫材料。最后简要总结了金属泡沫材料的应用。  相似文献   

3.
泡沫金属制备技术研究进展   总被引:18,自引:0,他引:18  
本文对泡沫金属制备技术研究现状进行了综述,并就其发展的前沿问题进行了讨论,指出了泡沫金属制备技术的理论研究和工业化规模生产技术的发展方向,对泡沫金属的研究和开发具有重要意义.  相似文献   

4.
熔体发泡法制备工艺的发展与展望   总被引:4,自引:1,他引:3  
于利民  王录才  王芳 《材料导报》2003,17(6):28-30,69
论述了国内外泡沫金属生产中熔体发泡法制备工艺的发展形势,并对熔体发泡法中不同种发泡工艺在生产中的应用情况进行了全面的概述。介绍了国内外对采用熔体发泡法生产泡沫金属所做的各种试探性研究,总结了其应用于生产实践中所存在的不足,对不同种发泡工艺的优缺点以及关键技术作了进一步的探讨。最后对熔体发泡法生产泡沫金属的发展前景做了前瞻性展望。  相似文献   

5.
泡沫铝夹芯板的制备技术   总被引:1,自引:1,他引:0  
泡沫金属是一类具有低密度以及新奇的物理、力学、电学、声学等特殊性能的新型材料.而泡沫铝的潜在用途之一是作为泡沫铝夹芯板的芯材使用.详细介绍了制备泡沫铝夹芯板的不同方法,如胶粘法、超声焊接法、激光协助发泡法、扩散焊接法、面板与预制材料轧制-包覆法和粉末复合轧制法等.通过比较,在国内粉末复合轧制法工艺简单,是最有希望适合高温作业和大批量生产的方法.  相似文献   

6.
轻合金泡沫材料制备技术研究进展   总被引:7,自引:1,他引:7  
轻合金泡沫在汽车及建筑等领域应用前景广阔,制备方法也较多.目前,轻合金泡沫的主要制备方法有粉体发泡法、熔体发泡法、渗流铸造法及气体发泡连续法等.在简要分析了这些轻合金泡沫制备方法中存在的问题后,提出了以后轻合金泡沫方面的研究重点.今后的重点应放在进一步研究金属泡沫材料性能与基体合金成分及发泡工艺之间的内在联系、发泡工艺对泡沫密度和气孔均匀性的影响规律等方面;轻合金泡沫的低成本生产工艺与相关设备的设计等方面的研究也应该作为重点.  相似文献   

7.
新的多孔泡沫镍制备工艺   总被引:1,自引:0,他引:1  
针对目前泡沫金属制备方法的缺点,提出了一种泡沫金属制备的新方法——电解液喷射沉积法。研究了喷射沉积制备泡沫镍的工艺,自行研制了试验装置,制备了具有不同孔隙率的泡沫镍试样,分析了相关工艺参数(电解液成分、电流密度、电解液喷射速度等)对泡沫镍微观结构的影响。结果表明:采用相对较低的镍离子浓度配方Bath A对制备均匀致密的枝晶多孔结构有利。随着电流密度的提高,泡沫镍的孔隙率逐渐降低;随着电解液喷射速度的提高,泡沫镍的孔隙率逐渐增加。总体上采用电解液喷射沉积法制备的泡沫镍的孔隙率在30~70%之间。  相似文献   

8.
多孔金属比表面积的计算方法   总被引:3,自引:0,他引:3  
提出了一种根据泡沫金属的孔率和孔径这两个基本参量计算其比表面积的方法.利用泡沫金属比表面积与孔率和孔径的对应数理关系,结合有关实验数据,成功地计算出了电沉积法和高压渗流铸造法制备的泡沫金属的比表面积.  相似文献   

9.
泡沫金属复合材料是一种轻质复合材料,具有低密度、高强度、高屏蔽性能、高阻尼性能等特性,其在航空航天、钻井隔水管浮筒、人工骨等多个领域具有广泛的应用前景,备受人们关注。本文通过对现有文献的研究,介绍了泡沫金属复合材料的制备方法,深入分析泡沫金属复合材料的显微结构对其性能的影响,综述了材料的力学性能、阻尼性能、屏蔽性能、隔热等性能和机制的进展以及其在相关领域的应用,为未来泡沫金属复合材料的开发提供一定的理论依据,并对其新制备工艺、建模研究、夹芯结构以及高性能泡沫空心球的制备等研究方向进行展望。  相似文献   

10.
碳化硅泡沫陶瓷具有气孔率高、热稳定性好等优良性能,被广泛用作金属溶液过滤器、高温气体和离子交换过滤器、催化剂载体等.重点介绍了碳化硅泡沫陶瓷的种类,阐述了碳化硅泡沫陶瓷的制备方法和影响碳化硅泡沫陶瓷产品性能的因素,展望了碳化硅泡沫陶瓷的发展前景.  相似文献   

11.
以工业酒精为分散剂,采用搅拌法将0.7%(体积分数)含量的短Cf均匀分散到可发泡前驱体的混合物中,并成功制备了高稳定性的泡沫铝材料。利用300dpi扫描仪、SEM和EDX,结合液态金属泡沫排液模型和Plateau边界与薄膜之间压差对粉末冶金泡沫铝的泡沫稳定性进行了研究。结果表明,短Cf改善了同铝熔体之间的润湿性,并广泛分布于Plateau边界和泡壁内以及泡孔内表面上;面扫描中的Cu元素分布均匀,没有出现CuAl2脆性相;短Cf的添加增加了熔体的表观粘度,因此减小了泡壁变薄速率和液态泡沫流动速率;通过在短Cf长度方向上改变Plateau边界和泡壁薄膜的曲率半径,减小了二者之间的压差。对于粉末冶金泡沫铝而言,短Cf是一种有效的外加稳定剂。  相似文献   

12.
介绍了泡沫金属的结构特性,总结了泡沫金属中池沸腾的气泡生长速度、气泡直径和气泡生长现象等传热特点,以及泡沫金属的孔隙率、孔密度等参数对池沸腾传热的影响,并指出了泡沫金属中沸腾传热的研究方向。  相似文献   

13.
The crushing behaviour of dynamically loaded metal foam-filled square columns has been investigated using an extended version of the existing self-similar pressure dependent constitutive model for metal foams. The model has been implemented in ABAQUS/Explicit and analyses have been conducted using different approaches to model the uniaxial and hydrostatic hardening behaviour of metal foams. A practical and reliable procedure to approximate the observed anisotropic behaviour within the computational framework of isotropic plasticity is introduced. The comparison between the available experimental and newly generated numerical results is presented in order to illustrate the accuracy and efficiency of the implemented model in predicting the crashworthiness of filled columns.  相似文献   

14.
Abstract

Metal foams have acquired popular interest in recent years and are potentially useful for many applications due to their light weight, high specific stiffness, high surface to volume ratio, and adjustable cell structure. Here, current methods of producing metal foams are briefly reviewed. The requirements for high porosity metal foams with open cells are discussed. A novel powder metallurgy route involving a polymeric vehicle is introduced that can readily generate open cell foams with porosity greater than 90%. Coarse Ti powder and fine carbonyl iron powder were tested. Although the resulting polymer metal foam was closed cell, particles were not retained in the windows. Upon pyrolysis to remove the resin, the windows opened and the final sintered metal foam was highly reticulated. Such foams offer a fine reticulated structure with cell diameters in the region of 100–200 µm, and may find applications in the areas of catalysis, biomaterials, and composites.  相似文献   

15.
Preceramic polymer derived cellular ceramics   总被引:5,自引:0,他引:5  
Ceramic foams were prepared by a self-blowing process of a poly(silsesquioxane) melt at 270 °C. The cell size, the interconnectivity density and the shape of the foam cells were adjusted by a thermal pre-curing procedure of the polymer at 200 °C. Inorganic fillers were used to modify processing behaviour and properties of the pyrolysed ceramic foam. After pyrolysis in inert atmosphere at 1200 °C ceramic composite foams with a total porosity up to 87% were obtained. The open cell ceramic foams had a mean cell diameter of 1.2 mm and a mean strut thickness of 0.2 mm. Interpenetrating phase composites (IPCs) were fabricated by infiltrating the open cellular ceramic preform with Mg alloy melt at 680 °C and a pressure of 86 MPa. The mechanical properties were found to depend on the reactions between the metal and the ceramic forming MgO, Mg2Si and Al12Mg17 as the major reaction products. The IPCs showed a significantly higher creep resistance at 135 °C, compression strength and elastic modulus compared to the unreinforced magnesium alloys.  相似文献   

16.
New closed cell composite metal foams are processed using casting and powder metallurgy (PM) techniques. The foam is comprised of steel hollow spheres packed into a random loose arrangement, with the interstitial spaces between spheres occupied with a solid metallic matrix. The characterization of composite metal foams was carried out using monotonic compression, compression-compression fatigue, loading-unloading compression, micro-hardness and nano-hardness testing. The microstructure of the composite metal foams was studied using optical, scanning electron microscopy imaging and electron dispersive spectroscopy. The composite metal foams displayed superior (5-20 times higher) compressive strengths, reported as 105 MPa for cast foams and 127 MPa for PM foams, and much higher energy absorbing capability as compared to other metal foams being produced with similar materials through other technologies.  相似文献   

17.
Bead foaming technology with double crystal melting peak structure has been recognized as a promising method to produce high-performance low-density foams with complex geometries. Polylactide (PLA) bead foaming has been of the great interest of researchers due to its origin from renewal resources and biodegradability. However, due to the PLA’s low melt strength and slow crystallization kinetics, the attempts have been limited to the manufacturing methods used for expanded polystyrene (EPS). In this study, we developed microcellular PLA bead foams with double crystal melting peak structure in a large content using a lab-scale autoclave system followed by molding of the beads. PLA bead foams were produced with expansion ratios and average cell sizes ranging from 6 to 31-fold and 6 to 50 μm, respectively. The high-melting point crystals generated during gas-saturation significantly affected the expansion ratio and cell density of the PLA bead foams by enhancing the PLA’s melt strength and promoting cell nucleation around the crystals. The tensile properties of the molded EPLA bead foams showed that EPLA bead foams with double crystal melting peak can be a promising substitute not only for EPS but also for expanded polypropylene (EPP) bead foams.  相似文献   

18.
This article presents an account of experiments used to produce aluminium alloy foams by the melt route process using titanium hydride as a foaming agent. Powdered titanium hydride with content of 0.4–1.4% (mass fraction) was added to the molten pure aluminium and the foaming condition was controlled at 690°C (1274°F). In the process, homogeneous aluminium foams were produced with a calcium amount of 1.0–3.0% (mass fraction). The mechanical properties of the aluminium foams with diverse relative density were tested. The result indicates that the foaming agent is suitable for making small aperture aluminium foams with an average pore diameter of 1.2?mm.  相似文献   

19.
Metal foams are used as absorbers for kinetic energy but predominantly, they have only been investigated under quasi-static load-conditions. Coating of open-cell metal foams improves the mechanical properties by forming of Ni/Al hybrid foam composites. The properties are governed by the microstructure, the strut material and geometry. In this study, the strain-rate effects in open-cell aluminium foams and new Ni/Al composite foams are investigated by quasi-static compression tests and low-velocity impact. For the first time, drop weight tests are reported on open-cell metal foams, especially Ni/Al composite foams. Furthermore, size-effects were evaluated. The microstructural deformation mechanism was analysed using a high-speed camera and digital image correlation. Whereas pure aluminium foams are only strain-rate sensitive in the plastic collapse stress, Ni/Al foams show a general strain-rate sensitivity based on microinertia effects and the rate-sensitive nano-nickel coating. Ni/Al foams are superior to aluminium foams and to artificial aluminium foams with equal density.  相似文献   

20.
Starch‐based loose‐fill packaging foams were made in a single‐screw laboratory‐scale extruder. Corn starch was blended with polystyrene in the ratio of 70 : 30 and extruded into foams using talc and polycarbonate as additives. Extrusions were carried out at moisture contents of 16, 18 and 20% (dry basis), and at barrel temperatures of 140 and 160°C. The influences of extrusion temperature, moisture content of starch, talc and polycarbonate on the radial expansion and other selected physical properties of starch foams were investigated. The effects of moisture and talc contents on the radial expansion of foams were found to be critical, while the role of temperature was close to significant. The expansion ratio increased when the moisture content was increased from 16 to 18%, and then decreased when moisture content was increased to 20%. In general, the expansion ratios of foams were higher at 160°C as compared to 140°C. Although polycarbonate mixed well with the starch–polystyrene melt, it was not effective as a structural and anti‐shrinking agent, and it did not contribute to the radial expansion. In general, the bulk densities and unit densities of the starch foams decreased as the moisture content and extrusion temperature increased. Scanning electron microscope images showed that the addition of talc yielded foams with smaller‐sized cells, with less expansion of the foam melt, and thus a higher density. X‐ray diffractograms revealed that the crystallinity of starch foams increased post‐extrusion, and there was adequate dispersion of the starch and polystyrene polymers to make the foam water‐resistant. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号