首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sanitized cheese plant was swabbed for the presence of nonstarter lactic acid bacteria (NSLAB) biofilms. Swabs were analyzed to determine the sources and microorganisms responsible for contamination. In pilot plant experiments, cheese vats filled with standard cheese milk (lactose:protein = 1.47) and ultrafiltered cheese milk (lactose:protein = 1.23) were inoculated with Lactococcus lactis ssp. cremoris starter culture (8 log cfu/mL) with or without Lactobacillus curvatus or Pediococci acidilactici as adjunct cultures (2 log cfu/mL). Cheddar cheeses were aged at 7.2 or 10°C for 168 d. The raw milk silo, ultrafiltration unit, cheddaring belt, and cheese tower had NSLAB biofilms ranging from 2 to 4 log cfu/100 cm2. The population of Lb. curvatus reached 8 log cfu/g, whereas P. acidilactici reached 7 log cfu/g of experimental Cheddar cheese in 14 d. Higher NSLAB counts were observed in the first 14 d of aging in cheese stored at 10°C compared with that stored at 7.2°C. However, microbial counts decreased more quickly in Cheddar cheeses aged at 10°C compared with 7.2°C after 28 d. In cheeses without specific adjunct cultures (Lb. curvatus or P. acidilactici), calcium lactate crystals were not observed within 168 d. However, crystals were observed after only 56 d in cheeses containing Lb. curvatus, which also had increased concentration of d(−)-lactic acid compared with control cheeses. Our research shows that low levels of contamination with certain NSLAB can result in calcium lactate crystals, regardless of lactose:protein ratio.  相似文献   

2.
Three experimental batches of Cheddar cheese were manufactured in duplicate, with standardization of the initial cheese-milk lactose content to high (5.24%), normal (4.72%, control), and low lactose (3.81%). After 35 d of aging at 4.4°C, the cheeses were subjected to temperature abuse (24 h at 21°C, unopened) and contamination (24 h at 21°C, packages opened and cheeses contaminated with crystal-containing cheese). After aging for 167 d, residual cheese lactose (0.08 to 0.43%) and l(+)-lactate concentrations (1.37 to 1.60%) were high and d(−)-lactate concentrations were low (<0.03%) for all cheeses. No significant differences in lactose concentrations were attributable to temperature abuse or contamination. No significant differences in l(+)- or d(−)-lactate concentrations were attributable to temperature abuse. However, concentrations of l(+)-lactate were significantly lower and d(−)-lactate were significantly higher in contaminated cheeses than in control cheeses, indicating inoculation (at d 35) with heterofermentative nonstarter lactic acid bacteria able to racemize l(+)-lactate to d(−)-lactate. The fact that none of the cheeses exhibited crystals after 167 d demonstrates that high cheese milk or residual lactose concentrations do not guarantee crystal formation. Contamination with nonstarter lactic acid bacteria can significantly contribute to d(−)-lactate accumulation in cheese.  相似文献   

3.
Calcium lactate crystals that sometimes form on Cheddar cheese surfaces are a significant expense to manufacturers. Researchers have identified several postmanufacture conditions such as storage temperature and packaging tightness that contribute to crystal formation. Anecdotal reports suggest that physical characteristics at the cheese surface, such as roughness, cracks, and irregularities, may also affect crystallization. The aim of this study was to evaluate the combined effects of surface roughness and packaging tightness on crystal formation in smoked Cheddar cheese. Four 20-mm-thick cross-section slices were cut perpendicular to the long axis of a retail block (~300 g) of smoked Cheddar cheese using a wire cutting device. One cut surface of each slice was lightly etched with a cheese grater to create a rough, grooved surface; the opposite cut surface was left undisturbed (smooth). The 4 slices were vacuum packaged at 1, 10, 50, and 90 kPa (very tight, moderately tight, loose, very loose, respectively) and stored at 1°C. Digital images were taken at 1, 4, and 8 wk following the first appearance of crystals. The area occupied by crystals and number of discrete crystal regions (DCR) were quantified by image analysis. The experiment was conducted in triplicate. Effects of storage time, packaging tightness, surface roughness, and their interactions were evaluated by repeated-measures ANOVA. Surface roughness, packaging tightness, storage time, and their 2-way interactions significantly affected crystal area and DCR number. Extremely heavy crystallization occurred on both rough and smooth surfaces when slices were packaged loosely or very loosely and on rough surfaces with moderately tight packaging. In contrast, the combination of rough surface plus very tight packaging resulted in dramatic decreases in crystal area and DCR number. The combination of smooth surface plus very tight packaging virtually eliminated crystal formation, presumably by eliminating available sites for nucleation. Cut-and-wrap operations may significantly influence the crystallization behavior of Cheddar cheeses that are saturated with respect to calcium lactate and thus predisposed to form crystals.  相似文献   

4.
Previous researchers have observed that surface crystals of calcium lactate sometimes develop on some Cheddar cheese samples but not on other samples produced from the same vat of milk. The causes of within-vat variation in crystallization behavior have not been identified. This study compared the compositions of naturally smoked Cheddar cheese samples that contained surface crystals with those of samples originating from the same vat that were crystal-free. Six pairs of retail samples (crystallized and noncrystallized) produced at the same cheese plant on different days were obtained from a commercial source. Cheese samples were 5 to 6 mo old at the time of collection. They were then stored for an additional 5 to 13 mo at 4°C to ensure that the noncrystallized samples remained crystal-free. Then, the crystalline material was removed and collected from the surfaces of crystallized samples, weighed, and analyzed for total lactic acid, l(+) and d(−) lactic acid, Ca, P, NaCl, moisture, and crude protein. Crystallized and noncrystallized samples were then sectioned into 3 concentric subsamples (0 to 5 mm, 6 to 10 mm, and greater than 10 mm depth from the surface) and analyzed for moisture, NaCl, titratable acidity, l(+) and d(−) lactic acid, pH, and total and water-soluble calcium. The data were analyzed by ANOVA according to a repeated measures design with 2 within-subjects variables. The crystalline material contained 52.1% lactate, 8.1% Ca, 0.17% P, 28.5% water, and 8.9% crude protein on average. Both crystallized and noncrystallized cheese samples contained significant gradients of decreasing moisture from center to surface. Compared with noncrystallized samples, crystallized samples possessed significantly higher moisture, titratable acidity, l(+) lactate, and water soluble calcium, and significantly lower pH and NaCl content. The data suggest that formation of calcium lactate crystals may have been influenced by within-vat variation in salting efficacy in the following manner. Lower salt uptake by some of the cheese curd during salting may have created pockets of higher moisture and thus higher lactose within the final cheese. When cut into retail-sized chunks, the lower salt, higher moisture samples contained more lactic acid and thus lower cheese pH, which shifted calcium from the insoluble to the soluble state. Lactate and soluble calcium contents in these samples became further elevated at the cheese surface because of dehydration during smoking, possibly triggering the formation of calcium lactate crystals.  相似文献   

5.
Previous research demonstrated that crystal coverage on the surface of Cheddar cheese can be quantitatively and nondestructively measured using image analysis of digital photographs of the cheese surface. The objective of the present study was to extend image analysis methodology to quantify and characterize additional features of visible crystals on cheese surfaces as they grow over time. A random weight (∼300 g) retail sample of naturally smoked Cheddar cheese exhibiting white surface crystals was obtained from a commercial source. The total area occupied by crystals and total number of discrete crystal regions on one of the surfaces (∼55 × 120 mm) was measured at 3-wk intervals for 30 wk using image analysis. In addition, 5 small (∼0.3 mm radius) individual crystals on that surface were chosen for observation over the 30-wk period. The crystals were evaluated for area, radius, and shape factor (circularity) every third week using image analysis. The total area occupied by crystals increased in a linear manner (R2 = 0.95) from about 0.44 to 7.42% of the total cheese surface area over the 30-wk period. The total number of discrete crystal regions also increased but in a nonlinear manner that was best described by a quadratic relationship. Measurement of discrete crystal regions underestimated the true number of crystals present at the cheese surface due to merging of adjacent crystals as they grew and merged into a single crystal region over time. Throughout this period, the shapes of the 5 individual crystals closely approximated perfect circles, except when adjacent crystals merged to form a single irregular crystal region, and the area occupied by each of the 5 crystals increased in a near-linear manner (R2 = 0.95). Image analysis approaches may be used to evaluate crystal formation and growth rates and morphology on cheese.  相似文献   

6.
We have observed a high incidence of calcium lactate surface crystals on naturally smoked Cheddar cheese in the retail marketplace. The objective of this study was to identify chemical changes that may occur during natural smoking that render Cheddar cheese more susceptible to calcium lactate crystal formation. Nine random-weight (approximately 300 g) retail-packaged samples of smoked Cheddar cheese were obtained from a commercial manufacturer immediately after the samples were smoked for about 6 h at 20°C in a commercial smokehouse. Three similarly sized samples that originated from the same 19.1-kg block of cheese and that were not smoked were also obtained. Within 2 d after smoking, 3 smoked and 3 control (not smoked) samples were sectioned into 5 subsamples at different depths representing 0 to 2, 2 to 4, 4 to 6, 6 to 8, and 8 to 10 mm from the cheese surface. Six additional smoked cheese samples were similarly sectioned at 4 wk and again at 10 wk of storage at 5°C. Sample sections were analyzed for moisture, l(+) and d(−) lactate, pH, and water-soluble calcium. The effects of treatment (smoked, control), depth from cheese surface, and their interactions were analyzed by ANOVA according to a repeated measures design with 2 within-subject variables. Smoked samples contained signficantly lower moisture and lower pH, and higher total lactate-in-moisture (TLIM) and water-soluble calcium-in-moisture (WSCIM) than control cheeses. Smoked samples also contained significant gradients of moisture, pH, TLIM, and WSCIM, with lower moisture and pH, and higher TLIM and WSCIM, occurring at the cheese surface. Gradients of moisture were still present in smoked samples at 4 and 10 wk of storage. In contrast, the pH, TLIM, and WSCIM equilibrated and showed no gradients at 4 and 10 wk. The results indicate that calcium and lactate in the serum phase of the cheese were elevated because of smoking, especially at the cheese surface immediately after smoking treatment, which presumably predisposes the smoked cheeses to increased susceptibility to calcium lactate surface crystallization.  相似文献   

7.
采用直接中和法,在乳酸菌发酵液中加入碳酸钙进行中和反应.通过对乳酸菌富集培养和发酵条件的优化提高发酵产酸量.单因素试验确定适宜培养条件为:接种量8%,装液量20%,温度36℃,初始pH值为6.0.用正交试验法对其发酵条件进行优化,最佳优化条件为:温度40℃,时间96h,接种量8%,碳源10%,初始pH值为7.0.再通过浓缩结晶法提取乳酸钙,最终乳酸钙收率可达72.10%.此工艺为后续乳酸菌发酵法回收利用含糖废液提供了实验基础和理论依据.  相似文献   

8.
非发酵剂乳酸菌是干酪中主要的次生菌群,不属于发酵微生物,通常不能很好的在牛奶中生长,不能产酸,但对干酪的风味形成有很重要作用。本文概述了非发酵剂乳酸菌的一些特征,包括不同原料制成的干酪中非发酵剂乳酸菌的来源、生长能源的利用、自身存在的蛋白分解系统对干酪风味形成影响及作为一种提高干酪品质的附属发酵剂的应用展望。  相似文献   

9.
Calcium lactate (CaL2) crystal formation on the surface of cheese continues to be a widespread problem for the cheese industry despite decades of research. To prevent those crystals from forming, it is necessary to keep the concentration of CaL2 below saturation level. The limited data available on the solubility of CaL2 at conditions appropriate for the storage of cheese are often conflicting. In this work, the solubility of L(+)-CaL2 in water was evaluated at 4, 10, and 24 degrees C, and the effects of salt and pH at those temperatures were investigated. The effects of additional calcium and lactate ions on solubility also were studied. The results suggested that temperature and the concentration of lactate ions are the main factors influencing the solubility of CaL2, with the other parameters having limited effect.  相似文献   

10.
This paper summarizes the results of 2 studies designed to investigate the influence of several manufacturing and curing treatments on the appearance of Cheddar cheese defects. Specifically, 2 defects, calcium lactate crystal formation and the expulsion of free liquid (weeping) were monitored in Cheddar cheese. Both studies were conducted at a commercial cheese manufacturing facility that produces Cheddar in 18.14-kg (40-lb) blocks. In the first study we monitored cheese calcium, both total and soluble during manufacture and early curing. In the second study we measured cheese pH from 3 d through 8 mo, as well as some factors that are influenced by cheese pH. Early cheese pH (3 d to 7 d) patterns were used to select vats of cheese for retail packaging. Mild Cheddar packaged at 30 d postmanufacture and sharp Cheddar packaged at 8 mo postmanufacture from the same vats were monitored for the incidence and severity of the defects. Our results indicated that factors measured in early stages of manufacture and curing (less than 7 d) such as cheese pH at mill, lactic acid concentration, nonprotein nitrogen, and calcium (total and soluble) in cheese did not correlate with the appearance of either calcium lactate or expulsion of free liquid in packaged cheeses. Factors including pH, lactic acid concentrations, and soluble calcium measured during curing (greater than 7 d) of cheese were found to be statistically significant in the development of defects and appeared to be associated with use of specific starter culture groups. In the study, 5 different starter culture groups, each consisting of a 4-strain blend of Lactococcus lactis ssp. cremoris and Lactococcus lactis ssp. lactis, were used to manufacture the cheeses. Cheese manufactured with one particular culture group showed no incidence of calcium lactate crystal formation or weeping during curing and shelf-life of cheeses in this study. This starter group also generated the least amount of pH change in cheese during the first month of curing. From these results we conclude that starter culture group, more than any other factor measured, played an important role in the development of calcium lactate and liquid expulsion defects in Cheddar cheese. Starter culture group appeared to strongly influence cheese pH, lactic acid, and soluble calcium concentrations during curing and storage.  相似文献   

11.
Gas-flushed packaging is commonly used for cheese shreds and cubes to prevent aggregation and loss of individual identity. Appearance of a white haze on cubed cheese is unappealing to consumers, who may refrain from buying, resulting in lost revenue to manufacturers. The objective of this study was to determine whether gas flushing of Cheddar cheese contributes to the occurrence of calcium lactate crystals (CLC). Cheddar cheese was manufactured using standard methods, with addition of starter culture, annatto, and chymosin. Two different cheese milk compositions were used: standard (lactose:protein = 1.47, protein:fat = 0.90, lactose = 4.8%) and ultrafiltered (UF; lactose:protein = 1.23, protein:fat = 0.84, lactose = 4.8%), with or without adjunct Lactobacillus curvatus. Curds were milled when whey reached 0.45% titratable acidity, and pressed for 16 h. After aging at 7.2°C for 6 mo, cheeses were cubed (1 × 1 × 4 cm) and either vacuum-packaged or gas-flushed with carbon dioxide, nitrogen, or a 50:50 mixture of carbon dioxide and nitrogen, then aged for an additional 3 mo. Heavy crystals were observed on surfaces of all cubed cheeses that were gas-flushed, but not on cheeses that were vacuum-packaged. Cheeses without Lb. curvatus exhibited l(+)-CLC on surfaces, whereas cheeses with Lb. curvatus exhibited racemic mixtures of l(+)/d(−)-CLC throughout the cheese matrices. The results show that gas flushing (regardless of gas composition), milk composition, and presence of nonstarter lactic acid bacteria, can contribute to the development of CLC on cheese surfaces. These findings stress the importance of packaging to cheese quality.  相似文献   

12.
The lactic acid populations of 2 seasonal Puzzone di Moena cheeses made from winter and summer raw cow's milk were characterized at different ripening times. Lactic acid bacteria (LAB) were isolated on selective media and subjected to genetic typing and identification. The species most frequently found during ripening were Lactobacillus paracasei ssp. paracasei, Lactobacillus plantarum, and Pediococcus pentosaceus. The different strains recognized by random amplification of polymorphic DNA-PCR were characterized for their acidifying and proteolytic activities to select nonstarter LAB to be used as secondary adjunct cultures (SAC). For each of the 3 above species, a strain showing weak acidification and high proteolytic capacity was selected. The 3 strains (Lb. paracasei ssp. paracasei P397, Lb. plantarum P399, and P. pentosaceus P41) constituted a mixed SAC used at 2 levels of concentration (103 and 104 cfu/mL) in experimental cheese making at dairy factory-scale. The analysis of volatile organic compounds as well as sensory analyses showed that the preferred level of SAC inoculation was 103 cfu/mL.  相似文献   

13.
Half-fat Cheddar cheese (∼15%, w/w, fat) was manufactured on three occasions from milk pasteurised at 72, 77, 82 or 87 °C for 26 s, and analysed over a 270 day ripening period. Increasing milk pasteurisation temperature significantly increased the levels of moisture (from ∼45% at 72 °C to 50% at 87 °C), total lactate, and D(−)-lactate in cheese over the 270 day ripening period. Conversely, the cheese pH decreased significantly on increasing pasteurisation temperature. Increasing the pasteurisation temperature did not significantly affect the populations of starter or non-starter lactic acid bacteria during maturation. The use of higher pasteurisation temperatures would appear particularly amenable to exploitation as a means of producing high-moisture (e.g., 40–41%), short-ripened, mild-flavoured Cheddar or Cheddar-like cheeses.  相似文献   

14.
国外优质干酪中乳酸菌的分离鉴定与应用   总被引:1,自引:0,他引:1  
对进口干酪中乳酸菌进行初步分离鉴定。同时利用其中优良菌株进行风味干酪生产小试,结果较好。  相似文献   

15.
The occurrence of calcium lactate crystals (CLC) in hard cheeses is a continual expense to the cheese industry, as consumers fail to purchase cheeses with this quality defect. This research investigates the effects of the protein concentration of cheese milk and the pH of cheese on the occurrence of CLC. Atomic absorption spectroscopy was used to determine total and soluble calcium concentrations in skim milk (SM1, 8.7% total solids), and skim milk supplemented with nonfat dry milk (CSM1, 13.5% total solids). Calcium, phosphorus, lactic acid, and citrate were determined in cheeses made with skim milk (SM2, 3.14% protein), skim milk supplemented with ultrafiltered milk (CSM2, 6.80% protein), and nonfat dry milk (CSM3, 6.80% protein). Supplementation with nonfat dry milk increased the initial total calcium in CSM1 (210 mg/100 g of milk) by 52% compared with the total calcium in SM1 (138 mg/100 g of milk). At pH 5.4, soluble calcium concentrations in CSM1 were 68% greater than soluble calcium in SM1. In cheeses made from CSM2 and CSM3, total calcium was 26% greater than in cheeses made from SM2. As the pH of cheeses made from SM2 decreased from 5.4 to 5.1, the concentration of soluble calcium increased by 61.6%. In cheeses made from CSM2 and CSM3, the concentrations of soluble calcium increased by 41.4 and 45.5%, respectively. Calcium lactate crystals were observed in cheeses made from SM2 at and below pH 5.1, whereas CLC were observed in cheeses from CSM2 and CSM3 at and below pH 5.3. The increased presence of soluble calcium can potentially cause CLC to occur in cheese manufactured with increased concentrations of milk solids, particularly at and below pH 5.1.  相似文献   

16.
This study investigated population dynamics of starter, adjunct, and nonstarter lactic acid bacteria (NSLAB) in reduced-fat Cheddar and Colby cheese made with or without a Lactobacillus casei adjunct. Duplicate vats of cheese were manufactured and ripened at 7 degrees C. Bacterial populations were monitored periodically by plate counts and by DNA fingerprinting of cheese isolates with the random amplified polymorphic DNA technique. Isolates that displayed a unique DNA fingerprint were identified to the species level by partial nucleotide sequence analysis of the 16S rRNA gene. Nonstarter biota in both cheese types changed over time, but populations in the Colby cheese showed a greater degree of species heterogeneity. The addition of the L. casei adjunct to cheese milk at 10(4) cfu/ml did not completely suppress "wild" NSLAB populations, but it did appear to reduce nonstarter species and strain diversity in Colby and young Cheddar cheese. Nonetheless, nonstarter populations in all 6-mo-old cheeses were dominated by wild L. casei. Interestingly, the dominant strains of L. casei in each 6-mo-old cheese appeared to be affected more by adjunct treatment and not cheese variety.  相似文献   

17.
Full fat, milled-curd Cheddar cheeses (2 kg) were manufactured with 0.0 (control), 0.1, 1.0, or 10.0 μmol of pepstatin (a potent competitive inhibitor of chymosin) added per liter of curds/whey mixture at the start of cooking to obtain residual chymosin levels that were 100, 89, 55, and 16% of the activity in the control cheese, respectively. The cheeses were ripened at 8°C for 180 d. There were no significant differences in the pH values of the cheeses; however, the moisture content of the cheeses decreased with increasing level of pepstatin addition. The levels of pH 4.6-soluble nitrogen in the 3 cheeses with added pepstatin were significantly lower than that of the control cheese at 1 d and throughout ripening. Densitometric analysis of urea-PAGE electro-phoretograms of the pH 4.6-insoluble fractions of the cheese made with 10.0 μmol/L of pepstatin showed complete inhibition of hydrolysis of αS1-casein (CN) at Phe23-Phe24 at all stages of ripening. The level of insoluble calcium in each of 4 cheeses decreased significantly during the first 21 d of ripening, irrespective of the level of pepstatin addition. Concurrently, there was a significant reduction in hardness in each of the 4 cheeses during the first 21 d of ripening. The softening of texture was more highly correlated with the level of insoluble calcium than with the level of intact αS1-CN in each of the 4 cheeses early in ripening. It is concluded that hydrolysis of αS1-CN at Phe23-Phe24 is not a prerequisite for softening of Cheddar cheese during the early stages of ripening. We propose that this softening of texture is principally due to the partial solubilization of colloidal calcium phosphate associated with the para-CN matrix of the curd.  相似文献   

18.
Wang F  Zhang X  Luo J  Guo H  Zeng SS  Ren F 《Journal of food science》2011,76(3):E248-E253
The changes in proteolysis, calcium (Ca) equilibrium, and functional properties of natural Cheddar cheeses during ripening and the resultant processed cheeses were investigated. For natural Cheddar cheeses, the majority of the changes in pH 4.6 soluble nitrogen as a percentage of total nitrogen (pH 4.6 SN/TN) and the soluble Ca content occurred in the first 90 d of ripening, and subsequently, the changes were slight. During ripening, functional properties of natural Cheddar cheeses changed, that is, hardness decreased, meltability was improved, storage modulus at 70 °C (G'T=70) decreased, and the maximum tan delta (TDmax) increased. Both pH 4.6 SN/TN and the soluble Ca were correlated with changes in functional properties of natural Cheddar cheeses during ripening. Kendall's partial correlation analysis indicated that pH 4.6 SN/TN was more significantly correlated with changes in hardness and TDmax. For processed cheeses manufactured from natural Cheddar cheeses with different ripening times, the soluble Ca content did not show significant difference, and the trends of changes in hardness, meltability, G'T=70, and TDmax were similar to those of natural Cheddar cheeses. Kendall's partial correlation analysis suggested that only pH 4.6 SN/TN was significantly correlated with the changes in functional properties of processed cheeses.  相似文献   

19.
通过传统的分离、培养方法从西藏青稞酒酒曲和西藏、新疆奶酪中分别得到1株和3株乳酸菌,采用16S rRNA基因序列同源性分析的方法对菌株进行鉴定.研究进行了这4株乳酸菌发酵制备酸奶的比较实验,发现这4株乳酸菌均具备乳酸发酵制成酸奶的能力,而且制成的酸奶品质良好.表明从酒曲和奶酪中分离乳酸菌是筛选生产酸奶菌株的良好途径.丰富乳酸菌多样性,提供优良菌株,为酸奶行业的可持续发展提供保证.  相似文献   

20.
Genetically engineered goats expressing elevated levels of the antimicrobial enzyme lysozyme in their milk were developed to improve udder health, product shelf life, and consumer well-being. The purpose of this study was to evaluate the effect of lysozyme on the development of lactic acid bacteria (LAB) throughout the cheese-making process. Raw and pasteurized milk from 7 lysozyme transgenic goats and 7 breed-, age-, and parity-matched nontransgenic controls was transformed into cheeses by using industry methods, and their microbiological load was evaluated. The numbers of colony-forming units of LAB were determined for raw and pasteurized goat milk, whey, and curd at d 2 and at d 6 or 7 of production. Selective plating media were used to enumerate lactococcal species separately from total LAB. Although differences in the mean number of colony-forming units between transgenic and control samples in raw milk, whey, and cheese curd were non-significant for both total LAB and lactococcal species from d 2 of production, a significant decrease was observed in both types of LAB among d 6 transgenic raw milk cheese samples. In pasteurized milk trials, a significant decrease in LAB was observed only in the raw milk of transgenic animals. These results indicate that lysozyme transgenic goat milk is not detrimental to LAB growth during the cheese-making process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号