首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Liquidus equilibrium relations for the air isobaric section of the system Y2O3–Fe2O3–FeO–Al2O3 are presented. A Complete solid-solution series is found between yttrium iron garnet and yttrium aluminum garnet as well as extensive solid solutions in the spinel, hematite, orthoferrite, and corundum phases. Minimum melting temperatures are raised progressively with the addition of alumina from 1469°C in the system Y–Fe–O to a quaternary isobaric peritectic at 1547°C and composition Y 0.22 Fe 1.08 Al 0.70 O 2.83* Liquidus temperatures increase rapidly with alumina substitutions beyond this point. The thermal stability of the garnet phase is increased with alumina substitution to the extent that above composition Y 0.75 Fe 0.65 Al 0.60 O 3 garnet melts directly to oxide liquid without the intrusion of the orthoferrite phase. Garnet solid solutions between Y 0.75 Fe 1.25 O 3 and Y 0.75 Fe 0.32- Al 0.93 O 3 can be crystallized from oxide liquids at minimum temperatures ranging from 1469° to 1547°C, respectively. During equilibrium crystallization of the garnet phase, large changes in composition occur through reaction with the liquid. Unless care is taken to minimize temperature fluctuations and unless growth proceeds very slowly, the crystals may show extensive compositional variation from core to exterior.  相似文献   

2.
Equilibrium diagrams for the systems NiO-SiO2, NiO-Al2O3, NiAl2O4-SiO2, Ni2SiO4-NiAl2O4, and NiAl2O4-Al6Si2O13 were drawn from data obtained by quenching and direct observational techniques. The only intermediate compound in the binary system NiO-SiO2 is Ni2SiO4, which has the olivine structure. Unlike other olivines which melt congruently, nickel olivine has an upper temperature of stability (1545°C) and at temperatures between 1545° and 1650°C, NiO and SiO2 coexist in equilibrium. The only compound in the binary system NiO-Al2O3 is NiAl2O4, which has a spinel structure. The nickel aluminate spinel varies in composition from 50 to 35 mole % Al2O3 at 1800°C, and the stoichiometric NiAl2O4 composition has a melting point near 2110°C. Of the joins within the ternary system NiO-Al2O3-SiO2 which were studied, only Ni2SiO4-NiAl2O4 is not binary. In this join, crystals of NiO exist in equilibrium with liquid and a ternary assemblage of NiO + NiAl2O4+ liquid is stable to 1775°C. The decomposition temperature of Ni2SiO4 is decreased from 1545°C in the binary system to approximately 1490°C, presumably the result of solubility of NiAl2O4 in Ni2SiO4. The join NiAl2O4-SiO2 is binary in that the compositions of crystalline phases can be expressed in terms of the chosen components. The eutectic temperature in the system is 1495°C. The join NiAl2O4-Al6Si2O13 is binary for the same reasons and has a eutectic temperature at 1720°C. Using the data obtained in this study and those published for the well-known system Al2O3-SiO2, a liquidus surface diagram for the system NiO-Al2O3-SiO2 is proposed. Nickel olivine, even though it has an upper limit of stability in the binary system, has a primary field in the ternary system NiO-Al2O3-SiO2. This is the only refractory oxide system known to illustrate this so-called “typical case,” the governing principles of which have been clearly presented in discussions of phase equilibria.  相似文献   

3.
The phase relations in the system U02-U03-Yz03, particularly in the Y203-rich region, were examined by X-ray and chemical analyses of reacted powders heated at temperatures up to 1700°C in H2, CO2-CO2 and air. Four phases were identified in the system at temperatures between 1000° and 1700°C: U308, face-centered cubic solid solution, body-centered cubic solid solution, and a rhombohedral phase of composition (U,Y)7O2 ranging from 52.5 to 75 mole % Y2O3. The rhombohedral phase oxidized to a second rhombohedral phase with a nominal composition (U,Y), at temperatures below 1000°C. This phase transformed to a face-centered cubic phase after heating in air above 1000° C. The solubility of UO, in the body-centered cubic phase is about 14 mole % between 1000° and 1700°C but decreases to zero as the uranium approaches the hexavalent oxidation state. The solubility of Yz03 in the face-centered cubic solid solution ranges from 0 to 50 mole % Y2O3 under reducing conditions and from 33 to 60 mole % Y2O3 under oxidizing conditions at 1000°C. At temperatures above 1000° C, the face-centered cubic solid solution is limited by a filled fluorite lattice of composition (U,Y)O2. For low-yttria content, oxidation at low temperatures (<300°C) permits additional oxygen to be retained in the structure to a composition approaching (U,Y)O2.25 A tentative ternary phase diagram for the system UO2-UO3-Y2O3 is presented and the change in lattice parameter and in cell volume for the solid-solution phases is correlated with the composition.  相似文献   

4.
Nanocrystalline β-SiC with additions of 7 wt% Al2O3, 2 wt% Y2O3, and 1 wt% CaO was subjected to tensile deformation to study its microstructural behavior under the dynamic process. The liquid-phase-sintered body had a relative density of >97% and an average grain size of 170 nm. Tension tests were conducted at initial strain rates ranging from 2 × 10−5 to 5 × 10−4 s−1, in the temperature range 1973–2023 K, in both argon and N2 atmospheres. Although grain-boundary liquids formed by the additions vaporized concurrently with the decomposition of SiC and extensive grain growth, the maximum tensile elongation of 48% was achieved in argon. Annealing experiments under the same conditions revealed that vaporization and grain growth were both dependent on experimental time. Therefore, high strain rates suffered less from the hardening effect when cavitation damage was more severe. Testing in an N2 atmosphere brought about crystallization of the grain-boundary phase and prevented severe vaporization; however, fracture occurred at only 8% elongation. Grain-boundary sliding was still the dominant mechanism for deformation.  相似文献   

5.
The phase equilibria in the zirconia-rich part of the system ZrO2−Yb2O3−Y2O3 were determined at 1200°, 1400°, and 1650°C. The stabilizing effects of Yb2O3 and Y2O3 were found to be quite similar with <10 mol% of either being necessary to fully stabilize the cubic fluorite-structure phase at 1200°C. The two binary ordered phases, Zr3Yb4O12 and Zr3Y4O12, are completely miscible at 1200°C. These were the only binary or ternary phases detected. The ionic conductivities of ternary specimens in this system were measured using the complex impedance analysis technique. For a given level of total dopant, the substitution of Yb2O3 for Y2O3 gives only minor increases in specimen conductivity.  相似文献   

6.
The phase relations at a temperature below "subsolidus" in the system Al2O3–B2O3–Nd2O3 are reported. Specimens were prepared from various compositions of Al2O3, B2O3, and Nd2O3 of purity 99.5%, 99.99%, and 99.9%, respectively, and fired at 1100°C. There are six binary compounds and one ternary compound in this system. The ternary compound, NdAl3(BO3)4 (NAB), has a phase transition at 950°C ± 15°C. The high-temperature form of NAB has a second harmonic generation (SHG) efficiency of KH2PO4 (KDP) of the order of magnitude of the form which has been used as a good self-activated laser material, and the low-temperature form of NAB has no SHG efficiency.  相似文献   

7.
8.
ZrO2–Y2O3–CuO nanocrystalline powders have been synthesized using a chemical coprecipitation method. Nano-powders were compacted uniaxially and densified in a muffle furnace. Densification studies show that the presence of CuO accelerates the densification process of ZrO2(3Y). A fully dense (>96%) pellet of ZrO2(3Y)/5 mol% CuO was obtained after sintering at 900°C, with a very small grain size of 44 nm calculated by X-ray line broadening.  相似文献   

9.
A series of La2O3–HfO2–SiO2 glasses, approximately along the join 0.73SiO2–0.27( x HfO2–(1− x )La2O3), 0< x <0.3), was prepared using containerless processing techniques (aerodynamic levitation combined with laser heating in oxygen). The enthalpy of formation and enthalpy of vitrification at 25°C were obtained from drop solution calorimetry of these glasses and appropriate crystalline compounds in a molten lead borate (2PbO–B2O3) solvent at 702°C. The enthalpy of formation from crystalline oxides was exothermic and became less exothermic with increasing HfO2 content. Heat contents were measured by transposed temperature drop calorimetry and depended linearly on the HfO2 content. Differential scanning calorimetry showed that both the onset glass transition and the onset crystallization temperature of these glasses increased with increasing HfO2 content. Upon slow cooling in air, the glasses crystallized to a mixture of baddeleyite, cristobalite, lanthanum disilicate, and hafnon.  相似文献   

10.
The importance of aluminum nitride (AlN) stems from its application in microelectronics as a substrate material due to high thermal conductivity, high electrical resistance, mechanical strength and hardness, thermal durability, and chemical stability. Yttria (Y2O3) is the best additive for AlN sintering. AlN densifies by a liquid-phase mechanism, where the surface oxide, Al2O3, reacts with Y2O3 to form an Y-Al-O-N liquid that promotes particle rearrangement and densification. Construction of the phase relations in this multicomponent system is essential for optimizing the properties of AlN. The ternary phase diagram of the AlN–Al2O3–Y2O3 was developed by Gibbs energy minimization using interpolation procedures based on modeling the binary subsystems. This paper aims at testing the resultant understanding experimentally at selected compositions using in situ high-temperature neutron diffractometry. These experimental results agree with the thermodynamic calculations of AlN–Al2O3–Y2O3. The ternary phase diagram has been constructed for the first time in this work. High-temperature neutron diffractometry has permitted real time measurement of the reactions involved in this ternary system, especially to determine the temperature range for each reaction, which would have been difficult to establish by other means.  相似文献   

11.
Subsolidus phase relationships in the Ga2O3–Al2O3–TiO2 system at 1400°C were studied using X-ray diffraction. Phases present in the pseudoternary system include TiO2 (rutile), Ga2−2 x Al2 x O3 ( x ≤0.78 β-gallia structure), Al2−2 y Ga2 y O3 ( y ≤0.12 corundum structure), Ga2−2 x Al2 x TiO5 (0≤ x ≤1 pseudobrookite structure), and several β-gallia rutile intergrowths that can be expressed as Ga4−4 x Al4 x Ti n −4O2 n −2 ( x ≤0.3, 15≤ n ≤33). This study showed no evidence to confirm that aluminum substitution of gallium stabilizes the n =7 β-gallia–rutile intergrowth as has been mentioned in previous work.  相似文献   

12.
A 2.45 GHz microwave-sintered Si3N4–Y2O3–MgO system containing various amounts of ZrO2 secondary additives have been studied with respect to phase transformation and densification behavior. The temperature dependent dielectric properties were measured from 25°C to 1400°C using a conventional cavity perturbation technique. Phase transformation behavior was studied using X-ray diffractometry. Microwave sintered results were compared with those of conventional sintered results. It has been found that α to β phase transformation was completed at a lower temperature in microwave-sintered samples than those of the conventionally sintered samples. Density of the microwave-sintered samples increased up to 2.5 wt% of ZrO2 addition and thereafter it showed a tendency to decrease or remain constant. The decrease in density is attributed to the pore generation caused by decomposition due to the localized over heating.  相似文献   

13.
The phase relations in the Nd2O3–Y2O3 system were experimentally studied in the 1300°–1600°C range. X-ray diffraction, scanning electron microscopy, and electron probe microanalysis were applied to analyze the phase composition of annealed Nd2O3–Y2O3 mixtures with varying Y2O3 content. A thermodynamic assessment was conducted using the experimental data obtained. The excess Gibbs energies of the solution phases were described based on a simple substitutional solution model. A consistent set of optimized interaction parameters was derived for the Gibbs energy of the constituent phases, resulting in a good match between calculated and experimental data.  相似文献   

14.
Heat treatments in several environments were performed on a series of compounds in the Al2O3 and Y2O3 system: Al2O3Y3Al5O12 eutectic, Y3Al5O12, YAlO3, Y4Al2O9, and Y2O3. The yttrium aluminates were found to be stable at high temperatures under vacuum and in air. However, when they were heat-treated under vacuum in proximity to SiC, degradation was observed. This was found to be primarily a result of carbothermal reduction. In a similarly reducing environment without Si, the yttrium aluminates, and Al2O3 and Y2O3, all exhibited degradation by carbothermal reduction. Based upon the experimental results, a degradation mechanism for yttrium aluminates was proposed.  相似文献   

15.
The thermodynamic data for the Y2O3–BaO–Cu2O–CuO quaternary system were optimized from measured thermodynamic data. A two-sublattice model for ionic solution was used to express the Gibbs free energy of the liquid phase, and a two-sublattice regular solution model was used for the nonstoichiometric YBa2Cu3O6+δ superconducting compound. The optimized thermodynamic data were used to calculate the phase diagrams of the Cu2O–CuO binary system and the CuO x –Y2Cu2O5 and CuO x –BaCuO2 quasi-binary systems. The results were in good agreement with reported measured data. The liquidus projection and isothermal and vertical sections of the Y2O3–BaO-CuO x quasi-ternary system were calculated. The effect of oxygen pressure on some reaction temperatures was predicted by calculating them at various oxygen pressures, and the oxygen contents (6 +δ) in YBa2Cu3O6+δ were calculated at various temperatures and oxygen pressures. The results were compared with experimental data.  相似文献   

16.
The Bi2O3–Nb2O5–NiO phase diagram at 1100°C was determined by means of solid-state synthesis, X-ray diffraction, and scanning electron microscopy. A ternary eutectic with a melting point below 1100°C was found to exist in the field between NiO, Bi2O3, and the end-member of the δBi2O3–Nb2O5 solid solution. The existence of the previously reported Bi3Ni2NbO9 phase was disproved. A pyrochlore homogeneity range around Bi1.5Ni0.67Nb1.33O6.25 was determined together with all the phase relations in this phase diagram.  相似文献   

17.
Results are presented of a study of phase equilibria among crystalline and liquid phases in the quaternary system CaO–MgO-Al2O3–SiO2 at Al2O3 contents greater than 35%. Equilibrium diagrams shown are for the five triangular joins CaAl2Si2O3-Ca2Al2SiO7-MgAl2O4, Ca2Al2SiO7-MgAl2O4-Al2O3, CaAl2Si2O8-MgO-Al2O3, CaAl2Si2O8-Mg2SiO4-MgAl2O4, and CaAl2Si2O8-MgO-Mg2SiO4. The composition and nature of the four quaternary peritectic points and the relationships of univariant lines and primary phase volumes are discussed.  相似文献   

18.
The cubic ( c -ZrO2) and tetragonal zirconia ( t -ZrO2) phase stability regions in the system ZrO2–Y2O3–Ta2O5 were delineated. The c -ZrO2 solid solutions are formed with the fluorite structure. The t -ZrO2 solid solutions having a c/a axial ratio (tetragonality) smaller than 1.0203 display high fracture toughness (5 to 14 MPa · m1/2), and their instability/transformability to monoclinic zirconia ( m -ZrO2) increases with increasing tetragonality. On the other hand, the t -ZrO2 solid solutions stabilized at room temperature with tetragonality greater than 1.0203 have low toughness values (2 to 5 MPa · m1/2), and their transformability is not related to the tetragonality.  相似文献   

19.
Measurements were made of temperature and ternary composition for coexisting liquid and crystalline phases on the air isobar in the system Fe2O3-Fe3O4-YFeO3 with particular regard to the stability range and compositional limits of yttrium iron garnet. Phase equilibrium relations were determined by conventional quenching techniques combined with measurements of loss in weight at the reaction temperature to locate true ternary compositions. The intersection of the air isobar with the ternary univariant boundary curve for coexisting magnetite, garnet, and liquid phases results in a eutectic-type situation at the composition Y0.27Fe1.73 O2.87 and 1469°± 2°C. A similar intersection of the isobar with the boundary curve for coexisting garnet, orthoferrite, and liquid phases gives rise to a peritectic-type reaction at 1555° 3°C. and Y0.44Fe1.56 O2.89 The yttrium iron garnet crystallizing from liquids within these temperature and composition limits contains up to 0.5 mole % iron oxide in excess of the stoichiometric formula in terms of the starting composition 37.5 mole % Y2O3, 62.5 mole % Fe2O3. At 1470° C. the garnet phase in equilibrium with oxide liquid contains 2 mole % FeO in solid solution. The small solubility of excess of iron oxide and partial reduction of the garnet phase in air are unavoidable during equilibrium growth from the melt.  相似文献   

20.
Compounds in a CaO–Y2O3–SnO2 system were prepared by a solid-state reaction at 1673 K. The phase relation in this system was investigated by powder X-ray diffraction. Besides the previously reported ternary compounds, CaSnO3, Ca2SnO4, Y2Sn2O7, and a quaternary compound Ca0.4Y1.2Sn0.4O3, solid-solution series of Ca2− x Y2 x Sn1− x O4 with 0≤ x ≤0.5, and Ca1− y Y2 y Sn1− y O3 with 0≤ y ≤0.2 and 0.95≤ y ≤1.0 were found. The cell parameters of these solid-solution series were refined. The changes of rhombohedral cell parameters in the samples prepared in the range 0.565< y <0.714 of Ca1− y Y2 y Sn1− y O3 suggested the existence of solid solutions of Ca0.4Y1.2Sn0.4O3, although their single phases could not be prepared, except at y =0.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号