首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 240 毫秒
1.
以树脂作为吸附剂,采用吸附-S/A/SMBBR组合工艺处理含酚高纯溶剂生产废水。试验结果表明,当上柱液流速为1 BV/h、批吸附量为20 BV时,吸附预处理效果良好,运行稳定,出水酚浓度适合后续生化处理范围,以1 BV/h的5%氢氧化钠溶液进行脱附,用量3 BV后脱附效果良好;在生化处理阶段,当进水酚浓度为15~45 mg/L、水力停留时间为7 d时,对酚的平均去除率在99%以上,且对冲击负荷具有较强的适应能力。可见,吸附-S/A/SMBBR组合工艺对含酚高纯溶剂生产废水的处理效果极佳,出水酚浓度可降低至0.5 mg/L以下,满足《石油化学工业污染物排放标准》(GB 31571—2015)的要求。  相似文献   

2.
以氨基化超高交联吸附树脂NDA-802吸附技术为核心,以焦化厂污水处理站的生化尾水为处理对象,开发了"混凝沉淀+砂滤+NDA-802树脂吸附"深度处理工艺,并实现了工程化应用。在控制树脂吸附流速为6 BV/h的条件下,以4%的HCl和6%的Na OH为脱附液,该工艺可将焦化废水生化尾水中的COD、SS、色度分别从120~150 mg/L、30~50 mg/L、100~150倍稳定降至80 mg/L、5 mg/L、20倍以下,达到了《炼焦化学工业污染物排放标准》(GB 16171—2012),并实现了部分处理出水的回用。  相似文献   

3.
《Planning》2019,(11)
某电子行业企业在生产过程中产生的有机废气具有风量大、浓度低、处理困难的特点。本文以某电子企业有机废气处理工程为例,采用"干式过滤+一级活性炭吸附浓缩+催化燃烧+二级活性炭吸附(带脱附功能)"组合装置,废气处理效率高于90%。工程实例表明改造后的装置可达到高效吸附、深度净化、经济可行、稳定性高的效果。  相似文献   

4.
吸附材料是影响固体除湿空调系统性能的关键,本文选取MIL-101(Cr)、MIL-100(Fe)、PCN-333(Al)及PHCM-166(Al)4种金属有机骨架材料进行室内空气除湿潜能研究,以期为固体除湿空调材料选择提供参考。首先对材料进行物理参数测试,然后采用重量法测试其对水蒸气吸脱附等温线。结果显示在通风空调工况下,MIL-101(Cr)、MIL-100(Fe)水蒸气最大吸附量达到同工况下传统吸附材料的2~5倍。MIL-101(Cr)水蒸气吸附量最高,且当相对湿度超过50%时,其水蒸气吸附量接近最大饱和吸附量,而在20%相对湿度下水蒸气脱附率超过90%,其水蒸气吸脱附性能主要影响因素是空气相对湿度。在吸附速率实验中,60 min内最大吸附效率为:模拟全新风工况下MIL-101(Cr)吸附速率是传统吸附材料的3.6~4.1倍。鉴于MIL-101(Cr)表现的水蒸气吸脱附性能,具有应用于固体除湿空调系统并提升其性能的潜能。  相似文献   

5.
腐植酸净化剂处理含锌废水的研究   总被引:6,自引:0,他引:6  
本文以陕西黄陵风化煤为原料,经活化处理,制成腐植酸离子交换树脂废水净化剂。该净化剂系天然高分子化合物,不溶、不碎、无毒,利用它处理含Zn~(2+)废水,吸附力强、交换性好、净化率高;取材方便、工艺简单,成本低廉。经静态吸附和动态交换试验表明,在pH=7时,吸附率高,交换容量大,处理周期长。饱和吸附后,经脱附处理,可反复使用。  相似文献   

6.
通过热水介质添加脱附破乳组剂的方法,研究了辽河油田公司沈阳采油厂油泥分离的相关条件。通过油泥的组分分析、热水介质温度实验、处理时间实验、脱附破乳组剂浓度实验,确定了热水介质添加脱附破乳组剂实现油泥分离的条件:脱附破乳组剂浓度为15.0 g/L、洗涤温度50℃、洗涤时间大于5 min。  相似文献   

7.
陈东 《城镇供水》2021,(4):52-55
建立了KOH等度淋洗离子色谱法测定自来水中微量六价铬的分析方法.该方法以23mmol/L KOH为淋洗液,流速1.0mL/min,进样量500uL.结果表明Cr6+可在6分钟内检测完毕,线性相关系数为0.9983;检出限为1.1μg/L;精密度为3.39%;回收率为104%,能够满足饮用水中该指标的定量需要,是一种绿色...  相似文献   

8.
《Planning》2014,(23)
以西南某地的板岩与粘土为吸附介质,采用动态吸附法来模拟放射性Pu废液在吸附介质的扩散与迁移,得出Pu浓度随时间与淋滤柱柱深的变化曲线。实验结果表明:Pu在粘土中分配系数约是板岩中4倍左右;粘土和板岩中同一柱深时,钚在土壤中数值要稍大于板岩中的含量,且流量变化是影响核素迁移的主要因素之一。  相似文献   

9.
针对钢铁钝化含铬废水污染,采用弱碱阴离子交换树脂进行了系统的研究,通过静态试验考查了pH值、振荡时间和离子交换树脂用量的影响,使用反应柱动态试验法研究了树脂的再生。  相似文献   

10.
预处理/树脂吸附/电极氧化工艺处理氟苯生产废水   总被引:1,自引:0,他引:1  
采用混凝沉淀/电聚浮除(EPN)/树脂吸附/电极氧化工艺处理江苏省某化工厂的氟苯生产废水,经过3个多月的试运行,树脂吸附速度控制在2 BV/h,用8%-10%的氢氧化钠溶液脱附,脱附速度控制在0.5 BV/h,树脂脱附率>99%.工程验收监测结果表明,系统出水水质达到<江苏省化学工业主要水污染物排放标准>(DB 32/939-2006)的二级标准和<污水综合排放标准>(GB 8978-1996)的二级标准.  相似文献   

11.
万芒 《建材地质》2012,(3):44-47
利用膨胀蛭石具有的强吸附性和阳离子交换能力,对其进行不同方法的改性,并考察了不同改性蛭石对磷的吸附效果。采用室内盆栽试验的方法,研究改性蛭石对富营养化水体中磷的富集效果,初步探讨利用蛭石吸附结合植物吸收来去除富营养化水体中磷的可行性。静态吸附实验表明,各改性蛭石的除磷效果为:镧改性蛭石〉酸改性蛭石〉铁改性蛭石〉原蛭石。以有无植物的盆栽试验对比发现,植物对磷的吸收作用在一定程度上可以促进改性蛭石对水体中磷的吸附。  相似文献   

12.
以实际水体作为实验用水,探究羟基磷灰石(HA)存在下大肠杆菌(E.coli)对六价铬[Cr(Ⅵ)]的捕获吸附特性。结果表明,E.coli对Cr(Ⅵ)的吸附符合假一级动力学,适宜pH值为6,该条件下E.coli对Cr(Ⅵ)的饱和吸附量为30.71 mg/g。纳米尺寸的HA释放和生物效应受浓度影响,当HA暴露浓度为5 mg/L时,正电性HA附着于细菌表面,促进E.coli与Cr(Ⅵ)接触,E.coli对Cr(Ⅵ)的饱和吸附量达到最高值55.98 mg/g。当HA暴露浓度为10~50 mg/L时,过量的HA附着在细菌表面,改变了细胞膜的通透性,因而吸附量略有降低,但依然高于E.coli单独对Cr(Ⅵ)的吸附量。当HA暴露浓度高于100 mg/L时,团聚在一起的HA对Cr(Ⅵ)也产生吸附作用,提高了体系对Cr(Ⅵ)的去除率。总体来说,HA和E.coli共同作用有助于提高对Cr(Ⅵ)的吸附效率。  相似文献   

13.
以实际水体作为实验用水,探究羟基磷灰石(HA)存在下大肠杆菌(E.coli)对六价铬[Cr(Ⅵ)]的捕获吸附特性。结果表明,E.coli对Cr(Ⅵ)的吸附符合假一级动力学,适宜pH值为6,该条件下E.coli对Cr(Ⅵ)的饱和吸附量为30.71 mg/g。纳米尺寸的HA释放和生物效应受浓度影响,当HA暴露浓度为5 mg/L时,正电性HA附着于细菌表面,促进E.coli与Cr(Ⅵ)接触,E.coli对Cr(Ⅵ)的饱和吸附量达到最高值55.98 mg/g。当HA暴露浓度为10~50 mg/L时,过量的HA附着在细菌表面,改变了细胞膜的通透性,因而吸附量略有降低,但依然高于E.coli单独对Cr(Ⅵ)的吸附量。当HA暴露浓度高于100 mg/L时,团聚在一起的HA对Cr(Ⅵ)也产生吸附作用,提高了体系对Cr(Ⅵ)的去除率。总体来说,HA和E.coli共同作用有助于提高对Cr(Ⅵ)的吸附效率。  相似文献   

14.
Awual MR  Jyo A  Ihara T  Seko N  Tamada M  Lim KT 《Water research》2011,45(15):4592-4600
This study was investigated for the trace phosphate removal at high feed flow rate by ligand exchange fibrous adsorbent. The zirconium(IV) loaded bifunctional fibers containing both phosphonate and sulfonate were used as a highly selective ligand exchange adsorbent for trace phosphate removal from water. The precursory fiber of the bifunctional fibers was co-grafted by polymerization of chloromethylstyrene and styrene onto polyethylene coated polypropylene fiber and then bifunctional fibers were prepared by Arbusov reaction followed by phosphorylation and sulfonation. Phosphate adsorption experimental work was carried out in column approach. Phosphate adsorption increased with decreasing the pH of feed solutions. An increase in the feeds flow rate brings a decrease in both breakthrough capacity and total adsorption. The effect of competing anions on phosphate adsorption systems was investigated. The experimental findings reveal that the phosphate adsorption was not affected in the presence of competing anions such as chloride and sulfate despite the enhancement of the breakthrough points and total adsorption. Due to high selectivity to phosphate species, low concentration level of phosphate (0.22 mg/L) was removed at high feed flow rate of 450 h−1 in space velocity. The adsorbed phosphate on the Zr(IV) loaded fibrous column was quantitatively eluted with 0.1 M NaOH solution and then the column was regenerated by 0.5 M H2SO4 for the next adsorption operation. During many adsorption-elution-regeneration cycles, no measurable Zr(IV) was found in the column effluents. Therefore, the Zr(IV) loaded bifunctional fibrous adsorbent is to be an effective means to treat wastewater to prevent eutrophication in the receiving water bodies for long time without any deterioration.  相似文献   

15.
The use of Amberlite XAD-2 resin column for extracting 5β-cholestan-3β-ol (coprostanol), a fecal sterol, from water was studied. It was found that the efficiency of the column extraction was comparable to that of the conventional liquid—liquid partitioning process. Maximum recovery from water samples depended upon pH of the sample, flow rate, resin mesh size, and concentration of coprostanol.Our data suggest that the use of Amberlite XAD-2 resin columns for the quantitation of coprostanol may be employed effectively to supplement the enumeration of coliform bacteria as an indicator of fecal pollution of water.  相似文献   

16.
Zhang Y  Zhou JL 《Water research》2005,39(16):3991-4003
Endocrine disrupting chemicals (EDCs) are the focus of current environment concern, as they can cause adverse health effects in an intact organism, or its progeny, subsequent to endocrine function. The paper reports on the removal of estrone (E1) and 17beta-estradiol (E2) from water through the use of various adsorbents including granular activated carbon (GAC), chitin, chitosan, ion exchange resin and a carbonaceous adsorbent prepared from industrial waste. The results show that the kinetics of adsorption were adsorbent and compound-dependent, with equilibration being reached within 2 h for a waste-derived carbonaceous adsorbent to 71 h for an ion-exchange resin for E1, and within 7 h for the waste-derived carbonaceous adsorbent to 125 h for GAC for E2. Of all the adsorbents tested, the carbonaceous adsorbent showed the highest adsorption capacity, with a maximum adsorption constant of 87500 ml/g for E1 and 116000 ml/g for E2. The GAC also had a very high adsorption capacity for the two compounds, with a maximum adsorption constant of 9290 ml/g for E1 and 12200 ml/g for E2. The effects of some fundamental environmental parameters including adsorbent concentration, pH, salinity and the presence of humic acid and surfactant on adsorption were studied. The results show that adsorption capacity of activated carbon was decreased with an increase in adsorbent concentration and by the presence of surfactant and humic acid. The results have demonstrated excellent performance of a waste derived adsorbent in removing E1 and E2 from water, and indicated the potential of converting certain solid waste into useful adsorbents for pollution-control purposes.  相似文献   

17.
Cheng H  Sabatini DA 《Water research》2002,36(8):2062-2076
This research studied simultaneous uptake of anionic surfactants and micellar-solubilized organic contaminants by anion-exchange resins. Anionic surfactant molecules adsorbed onto the positively charged resin mainly through electrostatic attraction, while the micellar-solubilized contaminants were excluded from aqueous solutions once the remaining micelles could no longer solubilize them. Data suggest that the excess contaminants adsorbed onto the resin skeleton and admicelle layer formed on the resin surface through hydrophobic interactions and eventually partitioned into the resin gel phase matrix. In batch adsorption, the contaminant solubilization capacity did not decrease linearly with respect to surfactant concentration decrease due to the increased solution counterion activity during anion exchange, and caused "delayed" contaminant uptake relative to that of the surfactant. No such effect occurred in continuous column adsorption, where the surfactant and contaminant breakthrough occurred simultaneously. Surfactant head and tail group properties, along with resin structure and particle size significantly affected surfactant and contaminant uptake rates. Relative to recovering the surfactant, the high exchange potential of the anionic surfactant prevented effective surfactant desorption, even at high electrolyte concentration and in the presence of a cosolvent. The resin matrix also had high affinity for the partitioned contaminant, and the contaminant elution from the resin seemed to be controlled by equilibrium partitioning.  相似文献   

18.
《Water research》1996,30(6):1478-1482
Phosphate treated sawdust shows remarkable increase in sorption capacity of Cr(VI) as compared to untreated sawdust. The adsorption process is pH dependent. 100% adsorption of Cr(VI) was observed in the pH range <2 for the initial Cr(VI) concentration of 8–50 mg 1−1. The effect of various adsorbent doses at pH 2 confirms Langmuir adsorption isotherms. 100% removal of Cr(VI) from synthetic waste as well as from electroplating waste containing 50 mg 1−1 Cr(VI) was achieved by batch as well as by column processes. The adsorbed Cr(VI) on phosphate treated sawdust was recovered (87%) using 0.01 M sodium hydroxide.  相似文献   

19.
Gupta VK  Gupta M  Sharma S 《Water research》2001,35(5):1125-1134
Red mud, an aluminium industry waste, has been converted into an inexpensive and efficient adsorbent and used for the removal of lead and chromium from aqueous solutions. Effect of various factors on the removal of these metal ions from water (e.g. pH, adsorbent dose, adsorbate concentration, temperature, particle size, etc.) has been studied and discussed. The effect of presence of other metal ions/surfactants on the removal of Pb2+ and Cr6+ has also been studied. The material exhibits good adsorption capacity and the data follow both Freundlich and Langmuir models. Thermodynamic parameters indicate the feasibility of the process. Kinetic studies have been performed to understand the mechanism of adsorption. Dynamic modelling of lead and chromium removal on red mud has been undertaken and found to follow first-order kinetics. The rate constant and mass transfer coefficient have also been evaluated under optimum conditions of removal in order to understand the mechanism. Column studies have been carried out to compare these with batch capacities. The recovery of Pb2+ and Cr6+ and chemical regeneration of the spent column have also been tried.  相似文献   

20.
This study is an efficient arsenic(V) removal from contaminated waters used as drinking water in adsorption process by zirconium(IV) loaded ligand exchange fibrous adsorbent. The bifunctional fibers contained both phosphonate and sulfonate groups. The bifunctional fiber was synthesised by graft polymerization of chloromethylstyrene onto polyethylene coated polypropylene fiber by means of electron irradiation graft polymerization technique and then desired phosphonate and sulfonate groups were introduced by Arbusov reaction followed by phosphorylation and sulfonation. Arsenic(V) adsorption was clarified in column methods with continuous flow operation in order to assess the arsenic(V) removal capacity in various conditions. The adsorption efficiency was evaluated in several parameters such as competing ions (chloride and sulfate), feed solution acidity, feed flow rate, feed concentration and kinetic performances at high feed flow rate of trace concentration arsenic(V). Arsenic(V) adsorption was not greatly changed when feed solutions pH at 3.0-7.0 and high breakthrough capacity was observed in strong acidic area below pH 2.2. Increasing the flow rate brings a decrease both breakthrough capacity and total adsorption. Trace level of arsenic(V) (0.015 mM) in presence of competing ions was also removed at high flow rate (750 h−1) with high removal efficiency. Therefore, the adsorbent is highly selective to arsenic(V) even in the presence of high concentration competing ions. The adsorbent is reversible and reusable in many cycles without any deterioration in its original performances. Therefore, Zr(IV) loaded ligand exchange adsorbent is to be an effective means to treat arsenic(V) contaminated water efficiently and able to safeguard the human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号