首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
激光多普勒振动计用于水下声光通信   总被引:2,自引:0,他引:2  
介绍了激光多普勒振动计(LDV)用于水下声光通信的应用背景,阐述了激光多普勒振动计的工作原理和两种相干检测方式。采用零差的相干探测方式,设计并实现了一套光纤结构的激光多普勒振动计。为了证明系统能够应用于水下声光通信,进行了对水下声源发出的声波频率和强度的探测实验。通过对实验数据的分析得出:第一,系统能够检测出水下声源发出的声波频率,对7kHz附近的10个声波频率的测量标准偏差小于8Hz;第二,系统探测信号强度与水下声源发声的声压级成指数关系,对于水下目标通信所用的3.5kHz和7kHz声波频段的最小探测能力分别达到146.2dB和150.8dB声压级。  相似文献   

2.
基于Morlet小波的水下声信号频率识别   总被引:1,自引:1,他引:0  
张晓琳 《光电子.激光》2010,(12):1839-1841
为准确获取水下目标的发声频率,建立了激光干涉法探测水下声信号的实验系统。提出一种基于Morlet小波的水声信号处理方法,将Morlet小波母函数的频率取定值,改变尺度因子,利用两者比值与水下声信号频率的关系分析小波系数模值,实时获取水下声信号的频率信息。实验结果表明:小波系数图可以反映出水下目标在某一时刻的发声频率,实验系统能够实时探测出1~15kHz的水下声信号。  相似文献   

3.
跨空水介质间的激光声技术是世界各国正在研究的一个重要课题,开展激光声作为通信声源的技术研究有助于海洋通信的发展应用,该通信技术利用激光在水中产生声波,在空中获取声回波信号,综合应用了激光技术、声学与电子学等多种技术手段,具有强大的技术优势;利用机载平台产生激光,在水中产生声波并在空中接收被水下目标反射或散射的声波,从而对水下目标进行探测,是光、声联合探测领域的一项新的交叉技术,可满足不同海域、不同战术使用下的作战需要。论文介绍了不同条件下的激光致声原理,分析了激光声技术在探测和通信领域的应用场景,并结合已有的研究成果对激光声技术的发展应用提出了几点建议。  相似文献   

4.
新型声光通信激光多普勒信号的鉴频电路   总被引:6,自引:0,他引:6  
根据激光多普勒测振技术进行声光通信的工作原理,设计一种新型、小型激光多普勒测振信号鉴频电路。该电路根据外差探测原理,本地振荡器输出信号与探测信号混频得到一路信号,经90°移相后的本地振荡器输出信号再与探测信号混频得到另一路信号,利用这两路信号得到了多普勒频移量和声源振动的频率。利用扬声器激发的水面模拟振源进行实验,表明该电路可有效测量的振动频率范围为300 Hz~10 kHz,证明可用于水下光声通信。  相似文献   

5.
研究了一种采用蓝绿波段激光、红外波段激光相结合的水下双波段激光探测技术,分析了红外波段激光击穿水辐射声波应用于水下探测的基本模式、探测特点及声信号的激发机理,实验研究了激光声信号的强度、波形、频谱等特性.实验结果表明,双波段激光复合探测模式可将空中光信道、水中声信道结合起来,具有强大的技术优势;激光声信号应用于水下探测,具有优良的脉冲特性及频谱特征.研究结果有助于推动激光在海洋中的探测应用.  相似文献   

6.
针对一种水下目标的声探测方法设计了激光声水下目标探测器。对激光声信号产生机理进行研究,并开展了水下探测器发射声信号检测的实验。结果表明:强脉冲激光聚焦于液体介质可以产生爆炸性球面声源,探测器内部的声反射面将球面声信号转变为高指向性的平面波信号。通过对探测器的发射信号和接收的目标回波信号进行数值计算,发现探测器发射信号具有窄波束指向性、高距离分辨力和远探测距离等特点,可以满足水下目标探测的应用需求。  相似文献   

7.
载波调制激光雷达技术在海洋探测中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
马泳  冀航  梁琨  林宏 《激光技术》2008,32(4):346-349
介绍了一种水下探测技术,以激光脉冲信号为载波,将微波信号加载到激光脉冲上进行调制编码,调制编码信息由光信号携带进入水下.在接收端,通过频率滤波实现对编码信号的提取,由编码信号的信号处理实现激光雷达水下目标探测.将该技术与多种抑制海水后向散射的方法进行比较,对载波调制激光雷达在海洋探测应用的特点和研究现状进行了综述.  相似文献   

8.
为了减少激光致声对水下目标遥感的实时性和有效性的影响,分析了激光超声诱导与光声效应原理,采用语音识别技术实现字符化编码,探讨语音信息的基频编码和控制激光发射的码型结构。搭建了实验测试系统,利用波长为1.06μm的脉冲激光进行水下超声激励,通过对水下激光声信号采集处理,完成了实验室空中平台到水下目标的实时语音控制。结果表明,非特定人的语音指令识别与编码方法有效实现了可变基频的激光超声水下目标控制。该研究为激光声水下目标遥感应用提供了一种新的技术途径。  相似文献   

9.
针对水下目标探测这一难题,设计了基于距离选通技术的水下激光成像系统并进行了相关实验.从实验结果来看,该系统可有效克服激光后向散射并对水下目标进行成像,对于水下目标探测、识别十分有效.  相似文献   

10.
脉冲CO2激光水下致声声脉冲特性的实验研究   总被引:1,自引:0,他引:1  
以分析水中的光声信号的特点为目的,采用实验的方法利用压电陶瓷球形水听器、数字存储示波器,对TEACO2脉冲激光在水中激发声波的幅度、频率等特性进行了测量,并用信号分析软件进行分析和处理。结果表明,TEACO2脉冲激光在水中产生的声信号幅度随脉冲能量增加而增大。实验中首次发现,激光声频率在100kHz以内有31kHz和62kHz两个峰值,且该两频率峰值随激光脉冲宽度增加而减小。光声信号的以上特性表明,可以通过调节激光脉冲的能量和宽度,选择或控制应用于水声通信、水下资源探测等技术的光声信号。  相似文献   

11.
建立波长1 550 nm的全光纤激光相干探测系统,系统采用全光纤设计,光路简单且稳定性高.数值仿真与实验结果表明,采用激光相干探测和时-频分析,可有效地提取水下不同频率、不同强度和不同深度的振动特征.该系统可实时探测出40~10 000 Hz的水下声信号,且测量标准偏差小于几个赫兹.因此,激光相干雷达用于水下目标的探测与识别具有实时性,该技术可为水下目标的特征提取和识别提供新的途径.  相似文献   

12.
在实验室条件下,对于不同频率、不同振动强度的水下声音信号展开激光相干探测研究,建立了基于该方法的实验系统。水表面在水下声音信号作用下产生波动时,用激光照射水表面,其产生的水表面散射光携带了声波信息并与参考光发生干涉,对干涉信号进行采集并处理可得到水下声信号的频率与强度信息。对不同条件下得到的实验结果进行对比分析。实验结果表明,激光相干探测技术可有效地探测水下声信号,并且随着声信号的频率提高、强度减弱,探测效果趋于变差。实验系统采用全光纤光路设计,取得了较好的效果。  相似文献   

13.
中低频水下声信号的激光干涉法探测   总被引:2,自引:1,他引:1  
基于迈克尔逊干涉仪原理,提出了在非平静水面情况下探测中低频水下声信号的激光干涉方法。利用携带声波信息的散射光和参考光的干涉结果提取水下声信号的频率信息,并进行了理论分析和实验验证,结果表明,激光干涉法可以准确探测出中低频水下声信号的频率信息。  相似文献   

14.
水下声信号激光探测技术研究   总被引:7,自引:2,他引:5  
水下声信号激光探测技术采用了激光接收技术。它在空气中利用光波,而在水中利用声波,把两种最佳的信道和物理场结合了起来,是遥感探测水下声信号的一种比较理想的方法。水下声信号在水空气界面会引起表面波动而对打在水表面处的激光束进行幅度调制。利用直接光强检测方法可以检测受水下声信号调制的激光信号。本文在理论分析的基础上通过试验验证了激光探测水下声信号技术的可行性,同时对水下声信号光电探测存在的问题进行了探讨并提出了相应的解决途径。  相似文献   

15.
水下声信号在水-空气界面会引起表面波动而对打在水表面的激光进行调制。利用直接光强检测方法可以检测到受水下声信号调制的激光信号,本文用光线分析理论模型证明了利用激光进行水下声波探测的可行性。  相似文献   

16.
强激光聚焦于水下时,通过光击穿机制辐射强声波信号。水体介质的盐度不同,在同等的激光参数、光学系统条件下,光击穿辐射的声波在强度、脉冲波形、频谱特征上具有一定的差异性。为研究水介质盐度对激光击穿形成的空泡辐射声波的影响,构建了激光声测量系统,实验研究了不同水体盐度参数对光击穿辐射声信号的影响。结论:激光击穿水介质伴随空泡脉动、声信号辐射效应;激光声信号脉冲宽度与水体盐度无关;空泡尺寸和激光声信号强度与激光脉冲能量成正比关系;水体盐度与激光声信号的强度早非线性变化关系。研究结果有助于激光声在海洋中的应用。  相似文献   

17.
于桂平 《电子器件》2020,43(1):162-166
针对可视化的堤坝渗漏点检测方法精度低、成本高的缺点,设计了一种堤坝渗漏探测系统。该系统采用ARM作为控制核心,由水听器完成水声信号采集,由ADS1256芯片对水声信号进行A/D转换,由LM393芯片完成入水检测,由MS5837芯片检测入水深度,经RS485总线完成数据高速传输,在上位机上使用LabView编写软件对数据进行处理和显示。实验结果表明,该系统在水面以下堤坝深度600 m范围内可以精确检测堤坝渗漏位置,而且图像显示实时性强,能够广泛满足堤坝渗漏探测的需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号