首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Binding of the B1 bradykinin receptor radioligand, [3H]-des-Arg10-kallidin (-KD) and the B2 receptor radioligand [3H]-bradykinin (-BK) was investigated in membranes prepared from WI38 human foetal lung fibroblasts. 2. One-site analysis of the saturation data for [3H]-des-Arg10-KD gave an equilibrium dissociation constant (KD) value of 0.51 +/- 0.12 nM and a maximum receptor density (Bmax) of 260 +/- 49 fmol mg-1 of protein. [3H]-des-Arg10-KD binding was displaced by ligands in the order: des-Arg10-KD > KD > > des-Arg9[Leu8]-BK > des-Arg9-BK > Hoe 140 > > BK, implying that it was binding selectively to B1 receptors. 3. One-site analysis of the binding of [3H]-BK to W138 membranes indicated that it had a KD value of 0.25 +/- 0.06 nM and a Bmax of 753 +/- 98 fmol mg-1 of protein. The potencies for displacement of [3H]-BK binding were: Hoe 140 > > BK = KD > > > des-Arg10-KD = des-Arg9[Leu8]-BK = des-Arg9-BK, which was consistent with binding to B2 receptors. 4. This is the first characterization of [3H]-des-Arg10-KD binding to include both kinetic and equilibrium data, and demonstrates that [3H]-des-Arg10-KD has a high affinity for human B1 bradykinin receptors and is sufficiently selective to be used as a radioligand for B1 receptors in human cells or tissues expressing an excess of B2 BK receptors.  相似文献   

2.
Our study was performed to investigate the mechanism underlying the phypotensive effect of kinin B1-receptor activation with des-Arg9-bradykinin (des-Arg9-BK), in comparison with B2-receptor activation with bradykinin (BK), in anesthetized dogs. Bolus intravenous and intraarterial injections of both kinins were compared. BK (0.6 microgram/kg) produced a transient hypotension of the same magnitude, regardless of the route of administration (from 110 +/- 6 mm Hg to 66 +/- 6 mm Hg, or -41 +/- 5%). In contrast, intraarterial injection of des-Arg9-BK (0.6 microgram/kg) induced a weaker hypotension compared with its intravenous injection (-27 +/- 2% vs. -39 +/- 3%, p < 0.05). The hypotension induced by both kinins was accompanied by increases in heart rate, maximum left ventricular dP/dt, and aortic blood flow, suggesting a reduction in peripheral resistance. The positive inotropic and chronotropic effects of BK and des-Arg9-BK were found to be mediated by the sympathetic nervous system, because they were abolished by propranolol. The hypotension induced by intravenous and intraarterial injections of BK and intravenous injections of des-Arg9-BK was only slightly reduced after nitric oxide (NO) synthase inhibition with NG-nitro-L-arginine (L-NNA). In contrast, the hypotensive effect of intraarterial injection of des-Arg9-BK was reduced by half after treatment with L-NNA (p < 0.05). Neither bilateral vagotomy nor ganglionic blockade with pentolinium reduced the hypotension induced by both kinins. In conclusion, the hypotensive effect of des-Arg9-BK and BK results from a peripheral vasodilation. The contribution of NO in this vasodilation is substantial for des-Arg9-BK when administered intraarterial but limited for BK and intravenous des-Arg9-BK.  相似文献   

3.
OBJECTIVE: To investigate the pathophysiologic roles of endogenous bradykinin (BK) and des-Arg9-BK on local and systemic inflammatory responses in a rat model of acute arthritis induced by peptidoglycan-polysaccharide (PG-APS). METHODS: Female Lewis rats were injected intraperitoneally with PG-APS. Selective antagonists of B1 (Lys-[Leu8]-des-Arg9-BK) and B2 (Hoe 140) receptors were infused at 500 microg/kg and 5 mg/kg per day for 6 days, starting 3 days before induction of inflammation, with subcutaneous micro-osmotic pumps. The local inflammatory response was assessed by paw edema, joint swelling, and tissue content of BK and des-Arg9-BK. These peptides were measured by highly sensitive and specific chemiluminescent enzyme immunoassays. Systemic inflammatory reaction was evaluated by the hepatic concentration of the type 2 acute-phase protein T-kininogen. RESULTS: PG-APS induced significant paw edema and joint swelling 24-72 hours after intraperitoneal injection. The maximal responses to PG-APS observed at 72 hours were significantly reduced (31-38%) by the combination of both B1 and B2 receptor antagonists at 5 mg/kg per day. PG-APS induced a significant increase of BK (up to 5.3-fold) and des-Arg9-BK (up to 4.1-fold) 72 hours after challenge. Liver T-kininogen content was increased by 5.3-, 7.7-, and 5.8-fold at 24, 48, and 72 hours, respectively, after PG-APS injection. At 24 hours, Hoe 140 and Lys-[Leu8]-des-Arg9-BK increased liver T-kininogen content by 43% and 45%, respectively, but they had no effect at 72 hours. CONCLUSION: The results indicate that endogenous kinins are involved in local and systemic acute inflammatory responses, through both B1 and B2 kinin receptors, in the model of PG-APS-induced arthritis.  相似文献   

4.
1 The characterization of the B1 kinin receptor, and some mediators involved in the inflammatory response elicited by intrathoracic (i.t.) administration of des-Arg9-bradykinin (BK) in the mouse model of pleurisy, was investigated. 2 An i.t. injection of des-Arg9-BK (10-100 nmol per site), a selective B1 agonist, caused a significant and dose-related increase in the vascular permeability observed after 5 min, which peaked at 1 h, associated with an increase in cell influx, mainly neutrophils, and, to a lesser extent, mononuclear cell influx, peaking at 4 h and lasting for up to 48 h. The increase in fluid leakage caused by des-Arg9-BK was completely resolved 4 h after peptide injection. I.t. injection of Lys-des-Arg9-BK (30 nmol per site) caused a similar inflammatory response. 3 Both the exudation and the neutrophil influx elicited by i.t. injection of des-Arg9-BK were significantly antagonized (P<0.01) by an i.t. injection of the selective B1 antagonists des-Arg9-[Leu8]-BK (60 and 100 nmol per site) or des-Arg9-NPC 17731 (5 nmol per site), administered in association with des-Arg9-BK (P<0.01), or 30 and 60 min before the cellular peak, respectively. In contrast, an i.t. injection of the B2 bradykinin selective receptor antagonist Hoe 140 (30 nmol per site), at a dose which consistently antagonized bradykinin (10 nmol per site)-induced pleurisy, had no significant effect on des-Arg9-BK-induced pleurisy. 4 An i.t. injection of the selective tachykinin receptor antagonists (NK1) FK 888 (1 nmol per site), (NK2) SR 48968 (20 nmol per site) or (NK3) SR 142801 (10 nmol per site), administered 5 min before pleurisy induction, significantly antagonized neutrophil migration caused by i.t. injection of des-Arg9-BK. In addition, FK 888 and SR 142801, but not SR 48968, also prevented the influx of mononuclear cells in response to i.t. injection of des-Arg9-BK (P<0.01). However, the NK3 receptor antagonist SR 142801 (10 nmol per site) also significantly inhibited des-Arg9-BK-induced plasma extravasation. An i.t. injection of the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP8-37 (1 nmol per site), administered 5 min before pleurisy induction, inhibited des-Arg9-BK-induced plasma extravasation (P<0.01), without significantly affecting the total and differential cell migration. 5 The nitric oxide synthase inhibitors L-NOARG and L-NAME (1 pmol per site), administered 30 min beforehand, almost completely prevented des-Arg9-BK (i.t.)-induced neutrophil cell migration (P<0.01), and, to a lesser extent, mononuclear cell migration (P<0.01). The D-enantiomer D-NAME had no effect on des-Arg9-BK-induced pleurisy. At the same dose range, L-NOARG and L-NAME inhibited the total cell migration (P<0.01). L-NAME, but not L-NOARG caused significant inhibition of des-Arg9-BK-induced fluid leakage. Indomethacin (1 mg kg(-1), i.p.), administered 1 h before des-Arg9-BK (30 nmol per site), inhibited the mononuclear cell migration (P<0.05), but, surprisingly, increased the neutrophil migration at 4 h without interfering with plasma extravasation. The administration of terfenadine (50 mg kg(-1), i.p.), 30 min before des-Arg9-BK (30 nmol per site), did not interfere significantly with the total cell migration or with the plasma extravasation in the mouse pleurisy caused by i.t. injection of des-Arg9-BK. 6 Pretreatment of animals with the lipopolysaccharide of E. coli (LPS; 10 microg per animal, i.v.) for 24 h did not result in any significant change of the inflammatory response induced by i.t. injection of des-Arg9-BK compared with the saline treated group. However, the identical treatment of mice with LPS resulted in a marked enhancement of des-Arg9-BK induced paw oedema (P<0.01). 7 In conclusion, we have demonstrated that the inflammatory response induced by i.t. injection of desArg9-BK, in a murine model of pleurisy, is mediated by stimulation of constitutive B1 receptors. (These responses are largely mediated by release of neuropeptides such as substanceP or CGRP and also by NO, but products derived from cyclo-oxygenase pathway and histamine seem not to be involved. Therefore, these results further support the notion that the B1 kinin receptor has an important role in modulating inflammatory responses, and it is suggested that selective B1 antagonists may provide therapeutic benefit in the treatment of inflammatory and allergic conditions.  相似文献   

5.
In order to identify agonist- and antagonist-binding epitopes in the human B1 and B2 bradykinin (BK) receptors, we exploited the ability of these receptors to discriminate between peptide ligands that differ only by the absence (B1) and presence (B2) of a C-terminal Arg. This was done by constructing chimeric proteins in which specific domains were exchanged between these receptors as recently described by us (Leeb, T., Mathis, S. A., and Leeb-Lundberg, L. M. F. (1997) J. Biol. Chem. 272, 311-317). The constructs were then expressed in HEK293 and A10 cells and assayed by radioligand binding and by agonist-stimulated inositol phospholipid hydrolysis and intracellular Ca2+ mobilization. Substitution of the third transmembrane domain (TM-III) of the B1 receptor in the B2 receptor (B2(B1III)) dramatically reduced the affinities of B2-selective peptide ligands including both the agonist BK and the antagonist NPC17731. High affinity binding of both ligands to B2(B1III) was fully regained when one residue, Lys111, in TM-III of this chimera was replaced with the corresponding wild-type (WT) B2 receptor residue, Ser (B2(B1IIIS111)). Replacement of Ser111 with Lys in the WT B2 receptor decreased the affinities of BK and NPC17731 and increased the affinity of the B1-selective des-Arg10 analog of NPC17731, NPC18565. The results show that the C-terminal residue of peptide agonists and antagonists when bound to the B2 receptor is adjacent to Ser111 in the receptor. A Lys at this position, as is the case in the WT B1 receptor, provides a positive charge that repels the C-terminal Arg in B2-selective peptides and attracts the negative charge of the C terminus of B1-selective peptides, which lack the C-terminal Arg. Therefore, the residues at this one single position are crucial in determining the peptide selectivity of B1 and B2 BK receptors.  相似文献   

6.
There is pharmacological evidence indicating that, in addition to the inhibition of angiotensin converting enzyme (ACE; EC 3.4.15.1), the potentiation of bradykinin (BK) responses may also involve the BK receptor or some binding site in the structures involved in the contractile response to this peptide. Dipeptides such as Val-Trp and some of its analogues as well as tripeptide homologues, including total and partial retro-inverso peptides, were synthesized and assayed for their ability to inhibit purified guinea pig plasma ACE and to potentiate the action of BK on the isolated ileum of the same species. The peptides containing the P2-P1, P1-P'1, and P'1-P'2 inverted amide bonds inhibited ACE, were resistant to hydrolysis, and, depending on the amino acid composition, some of them potentiated the contractile response to BK while others did not. Des-[Arg1]-BK, which has an intrinsic activity at concentrations higher than 10(-5) M, and the very dissimilar angiotensin I (AI) analogue [Cys5-Cys10]-angiotensin-I-(5-10)-amide, which has no detectable contractile activity, were able to inhibit ACE and potentiate BK. In contrast to these peptides, BPP5a and BPP9a from Bothrops jararaca venom, and Potentiators B and C from Agkistrodon halys blomhoffi venom were more effective as BK potentiators than as ACE inhibitors. In conclusion, we have synthesized and assayed compounds that preferentially inhibit ACE, e.g. retro-inverso tripeptides, or potentiate the response of smooth muscle to BK, e.g. snake venom peptides.  相似文献   

7.
Specific direct bradykinin (BK) binding and competitive inhibition was detected in human neutrophil and peripheral blood mononuclear cell (PBMC) detergent solubilized extracts and purified plasma membranes using in vitro radioreceptor ligand binding. Scatchard analyses of [125I]-BK binding revealed an equilibrium dissociation constant (Kd) of 2.9 x 10(-11) M for neutrophils and 5.6 x 10(-11) M for PBMC using [des-arg9]-BK a B1 agonist; 2.6 x 10(-11) M for neutrophils, 6.2 x 10(-11) M for PBMC with BK a B2 agonist; 5.4 x 10(-11) M for PBMC using Lys-BK a B2 agonist. The number of binding sites (Bmax) was calculated to be 0.113 fM/microgram protein (720 receptors per cell) for neutrophils and 0.200 fM/microgram protein (1289 receptors per cell) for PBMC with the B1 agonist while with the B2 agonists the values were 0.128 fM/microgram protein (818 receptors per cell) for neutrophils and 0.157 fM/microgram protein (1005 receptors per cell) for PBMC with BK, and 0.293 fM/microgram protein (1870 receptors per cell) with Lys-BK for PBMC. In a competitive binding inhibition assay using neutrophil and PBMC glycerol purified plasma membranes, high affinity binding in the nanomolar range was detected to Lys-BK and BK but with [des-arg9]-BK a 10-100 fold lower order affinity was observed this being indicative of pharmacologically defined B2 characteristics.  相似文献   

8.
1. An orally active, nonpeptide bradykinin (BK) B2 receptor antagonist, FR173657 (E)-3-(6-acetamido-3-pyridyl)-N-[N-[2-4-dichloro-3-[(2-methyl-8-quinolin yl) oxymethyl]phenyl]-N-methylaminocarbonyl-methyl] acrylamide) has been identified. 2. This compound displaced [3H]-BK binding to B2 receptors present in guinea-pig ileum membranes with an IC50 of 5.6 x 10(-10) M and in rat uterus with an IC50 of 1.5 x 10(-9) M. It did not inhibit different specific radio-ligand binding to other receptor sites. 3. In human lung fibroblast IMR-90 cells, FR173657 displaced [3H]-BK binding to B2 receptors with an IC50 of 2.9 x 10(-9) M and a Ki of 3.6 x 10(-10) M, but did not reduce [3H]-des]Arg10-kallidin binding to B1 receptors. 4. In guinea-pig isolated preparations, FR173657 antagonized BK-induced contractions with an IC50 of 7.9 x 10(-9) M, but did not antagonize acetylcholine or histamine-induced contractions even at a concentration of 10(-6) M. FR173657 caused parallel rightward shifts of the concentration-response curves to BK at concentrations of 10(-9) M and 3.2 x 10(-9) M, and a little depression of the maximal response in addition to the parallel rightward shift of the concentration-response curve at a concentration of 10(-8) M. Analysis of the data yield a pA2 of 9.2 +/- 0.2 (n = 5) and a slope of 1.5 +/- 0.2 (n = 5). 5. In vivo, the oral administration of FR173657 inhibited BK-induced bronchoconstriction dose-dependently in guinea-pigs with an ED50 of 0.075 mg kg-1, but did not inhibit histamine-induced bronchoconstriction even at 1 mg kg-1. FR173657 also inhibited carrageenin-induced paw oedema with an ED50 of 6.8 mg kg-1 2 h after the carrageenin injection in rats. 6. These results show that FR173657 is a potent, selective, and orally active bradykinin B2 receptor antagonist.  相似文献   

9.
A genomic clone encoding the mouse B1 receptor was isolated by homology to the human B1 receptor cDNA. The deduced amino acid sequence of the mouse B1 receptor is 72% identical to the human B1 receptor and 73% identical to the rabbit B1 receptor. Ligand binding studies of the mouse B1 receptor expressed in COS cells indicate that it has the pharmacological properties associated with the B1 receptor subtype. However the pharmacology of the mouse receptor is unique in that it possesses a 2-3-fold selectivity for the 'classical' B1 agonist des-Arg9BK over the agonist des-Arg10 kallidin. In contrast, the human and rabbit B1 receptors exhibit an approx. 2000- and 150-fold selectivity, respectively, for des-Arg10kallidin over des-Arg9BK. Thus relative to the human and rabbit B1 receptors the mouse B1 receptor has the opposite selectivity for kinin agonists. The DNA sequence of the region encoding bradykinin was determined for two different mouse kininogen cDNA clones, both encode the sequence Arg-BK. Antipeptide antibodies directed against a C-terminal peptide of the human B1 receptor were produced. Initial characterization of this antibody indicates that it detects specific bands by Western blot analyses that are present in membranes prepared from COS cells transfected with the human B1 receptor cDNA but not from mock transfected COS cells.  相似文献   

10.
1. Bradykinin (BK) and Lys-BK are peptides which are released at high nanomolar concentrations into the tear-film of ocular allergic patients. We hypothesized that these peptides may activate specific receptors on the ocular surface, especially the corneal epithelium (CE) and thus the CE cells may represent a potential target tissue for these kinins. 2. The purpose of the present studies, therefore, was to determine the presence of and the pharmacological characteristics of bradykinin receptors on normal cultured primary and SV40 virus-transformed human corneal epithelial (CEPI) cells by use of the accumulation of [3H]-inositol phosphates ([3H]-IPs) as a bioassay. 3. Bradykinin (BK) induced a maximal 1.95 +/- 0.24 fold (n = 17) and 2.51 +/- 0.29 fold (n = 26) stimulation of [3H]-IPs accumulation in normal, primary (P-CEPI) and SV40-immortalized (CEPI-17-CL4) cells, respectively. This contrasted with a maximal 3.2-4.5 fold and 2.0-2.9 fold stimulation by histamine (100 microM) and platelet activating factor (100 nM) in both cell-types, respectively. 4. The molar potencies of BK and some of its analogues in the CEPI-17-CL4 cells were as follows: BK (EC50 = 3.26 +/- 0.61 nM, n = 18), Lys-BK (EC50 = 0.95 +/- 0.16 nM, n = 5), Met-Lys-BK (EC50 = 2.3 +/- 0.42 nM, n = 5), Ile-Ser-BK (EC50 = 5.19 +/- 1.23 nM, n = 6), Ala3-Lys-BK (EC50 = 12.7 +/- 2.08 nM, n = 3), Tyr8-BK (EC50 = 19.3 +/- 0.77 nM, n = 3), Tyr5-BK (EC50 = 467 +/- 53 nM, n = 4) and des-Arg9-BK (EC50 = 14.1 +/- 2.7 microM, n = 4). The potencies of BK-related peptides in normal, P-CEPI cells were similar to those found in transformed cells, thus: BK, EC50 = 2.02 +/- 0.69 nM (n = 7), Tyr8-BK, EC50 = 14.6 +/- 2.7 nM (n = 3), Tyr5 = BK, EC50 = 310 +/- 70 nM (n = 4) and des-Arg9-BK, EC50 = 12.3 +/- 3.8 microM (n = 3). 5. The bradykinin-induced responses were competitively antagonized by the B2-receptor selective BK antagonists, Hoe-140 (D-Arg-[Hyp3, Thi5, D-Tic7, Oic8]BK; Icatibant; molar antagonist potency = 2.9 nM; pA2 = 8.54 +/- 0.06, n = 4; and slope = 1.04 +/- 0.08) and D-Arg0[Hyp3,Thi5,8, DPhe7]-BK (KB = 371 nM; pKB = 6.43 +/- 0.08, n = 4) in CEPI-17-CL4 cells. The antagonist potency of Hoe-140 against BK in normal, P-CEPI cells was 8.4 +/- 1.8 nM (pKi = 8.11 +/- 0.12, n = 4), this being similar to the potency observed in the immortalized cells. 6. This rank order of potency of agonist BK-related peptides, coupled with the antagonism of the BK-induced [3H]-IPs by the specific B2-receptor antagonists, strongly suggests that a B2-receptor subtype is involved in mediating functional phosphoinositide (PI) responses in the CEPI-17-CL4 and P-CEPI cells. 7. In conclusion, these data indicate that the P-CEPI and CEPI-17-CL4 cells express BK receptors of the B2-subtype coupled to the PI turnover signal transduction pathway. The CEPI-17-CL4 cells represent a good in vitro model of the human corneal epithelium in which to study further the role of BK receptors in its physiology and pathology, such as in allergic/inflammatory conditions, potential wound healing and other functions of the cornea.  相似文献   

11.
1. Bradykinin (BK) contributes to the inflammatory response inducing vasodilation of postcapillary venules and has been demonstrated to induce neovascular growth in subcutaneous rat sponges. 2. In this study the ability of BK to stimulate cell growth and migration in cultured endothelium from coronary postcapillary venules (CVEC) has been investigated. 3. [3H]-thymidine incorporation in subconfluent and synchronised CVEC was used to monitor DNA synthesis over 24 h. BK promoted a concentration-dependent increase of DNA synthesis with maximal activity at 100 nM. At this concentration BK also induced 18 fold accumulation of c-Fos protein immunoreactivity in the nucleus within 1 h from peptide exposure. 4. The total number of cells recovered after 48 h exposure to BK was increased in a concentration-dependent manner. Maximal effect was produced by 100 nM concentration of the peptide which produced 50% increase in cell number. The selective B1 receptor agonist Des-Arg9-BK mimicked the proliferative effect of BK, while the B2 receptor agonist kallidin was devoid of any activity. The proliferation induced by BK was abolished in a concentration-dependent manner by the addition of the B1 selective antagonist Des-Arg9-Leu8-BK, while the selective B2 receptor antagonist HOE140 did not modify BK-induced growth. 5. DNA synthesis and growth promoted by a threshold concentration of fibroblast growth factor-2 (FGF-2) (0.25 nM) were potentiated by increasing concentrations of BK and Des-Arg9-BK. 6. Endothelial cell migration assessed by the Boyden Chamber procedure was not promoted by BK or the selective B1 and B2 receptor agonists. 7. These data are the first demonstration that BK promotes growth of endothelial cells from postcapillary venules. The mitogenic activity of BK involves c-Fos expression and potentiates the growth promoting effect of FGF-2. Only the B1 receptor appears to be responsible for the proliferation induced by BK and suggests that this type of receptor might be implicated in favouring angiogenesis of coronary venules.  相似文献   

12.
13.
Bradykinin (BK) is a peptide hormone with sequence Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9 and has been implicated in a multitude of pathophysiological processes such as the ability to lower systemic blood pressure and stimulate pain. BK analogues having bulky, beta-branched D-aliphatic residues at position 7 combined with bulky L-aliphatic residues at position 8 have now been observed to be strong antagonists. Conformational studies based on two-dimensional nmr experiments in methanol/water (80/20 v/v) were carried out on several such active antagonists in a polar solvent. Included in this study were the very active antagonists, [D-Arg0,Hyp3,Thi5,D-Cpg7,Cpg8]-BK [Cpg: alpha-cyclo-pentyl-glycine; Hyp: trans-4-hydroxy-L-proline; Thi: beta-(2-thienyl)-L-alanine] (I), [D-Arg0,Hyp3,D-Cpg7,Cpg8]-BK (II), as well as its variant with D-Cpg7 replaced by Cpg7, namely [D-Arg0,Hyp3,Cpg7,Cpg8]-BK (III). A turn-like structure, which coexists with the extended conformation, was observed between residues 2 and 5 for the most active antagonists I and II, in direct correlation with the peptide activities. No turn-like structure was found for residues 6-9. In peptide III, a turn-like structure was not identified. The existence of a turn at the C-terminal end of bradykinin and its analogues has been predicted by empirical calculations and supported by nmr measurements. But the present nmr study on the most active antagonists (I, II) does not support this hypothesis. Instead, the data suggest that a turn-like structure between residues 2 and 5 could be important for antagonist activity. Finally, one weak inhibitor [D-Cpg7]-BK (IV) showed no defined secondary structure.  相似文献   

14.
1. The nonpeptide bradykinin (BK) B2 receptor antagonist, FR165649 (8-[2,6-dichloro-3-[N-[(E)-4-(N-methylcarbamoyl)cinnamidoacetyl ]-N-methylamino]benzyloxy]-2-methylquinoline), and agonist, FR190997 (8-[2,6-dichloro-3-[N-[(E)-4-(N-methylcarbamoyl) cinnamidoacetyl]-N-methylamino]benzyloxy]-2-methyl-4-(2-pyridyl methoxy)quinoline) have been identified. These compounds have a common chemical structure, and the 2-pyridylmethoxy group is the only structural difference between them. 2. Both FR165649 and FR190997 displaced [3H]-BK binding to B2 receptors in guinea-pig ileum membranes, with an IC50 of 4.7 x 10(-10) M and 1.5 x 10(-9) M, respectively. They also displaced [3H]-BK binding to B2 receptors in human lung fibroblast IMR-90 cells, with an IC50 of 1.6 x 10(-9) M and 9.8 x 10(-10) M, respectively. 3. In guinea-pig isolated ileum-preparations, FR165649 had no agonistic effect on contraction and caused parallel rightward shifts of the concentration-response curves to BK on contraction. Analysis of the data produced a nominal pA2 value of 9.2+/-0.1 (n=5) and a slope of 1.4+/-0.1 (n=5). On the other hand, FR190997 induced concentration-dependent contraction of guinea-pig ilea with a pD2 of 7.9+/-0.2 and the contraction was inhibited by a specific peptide bradykinin B2 receptor antagonist, Hoe 140 (D-Arg-[Hyp3, Thi5, D-Tic7, Oic8]BK) in a non-competitive manner. 4. In IMR-90 cells, FR165649 had no agonistic effect on phosphatidyl inositol (PI) hydrolysis and caused parallel rightward shifts (approximately 200 fold shift at 10(-7) M) of the concentration-response curves to BK on PI hydrolysis. FR190997 induced concentration-dependent PI hydrolysis in IMR-90 cells with a pD2 of 8.4+/-0.1, and this effect was inhibited by Hoe 140. 5. These results indicate that FR165649 and FR190997 are, respectively, a potent bradykinin B2 receptor antagonist and agonist, and that the agonistic activity depends on the small part of the nonpeptide ligand. FR165649 and FR190997 may be useful tools for studying the relationship between ligands and receptors.  相似文献   

15.
16.
Several B2 bradykinin (BK) receptor-specific antagonists including HOE140, NPC17731, and NPC567 exhibited negative intrinsic activity, which was observed as a decrease in basal phosphoinositide hydrolysis in primary cultures of rat myometrial cells, and this response was opposite to that elicited by the agonist BK. The order of potency of the antagonists in attenuating basal activity was essentially the same as that in competing both [3H]BK and [3H]NPC17731 for binding to B2 receptors on both intact rat myometrial cells and bovine myometrial membranes. We previously proposed a three-state model for the binding of agonists to G-protein-coupled B2 receptors in bovine myometrial membranes (Leeb-Lundberg, L. M. F. and Mathis, S. A. (1990) J. Biol. Chem. 265, 9621-9627). This model was based on the ability of BK to promote the sequential formation of three receptor binding states where formation of the third, equilibrium state was blocked by Gpp(NH)p (guanyl-5'-yl imidodiphosphate) identifying it as the G-protein-coupled state of the receptor. Here, we show that, in contrast to BK, these antagonists bound preferentially to a G-protein-uncoupled state of the receptor. These results indicate that B2 receptor antagonists that stabilize a G-protein-uncoupled state of the receptor act as inverse agonists. Furthermore, these results provide strong evidence that endogenous G-protein-coupled receptors exhibit spontaneous activity in their natural environment in the absence of agonist occupancy.  相似文献   

17.
This study investigates the effect and some of the mechanisms involved following systemic treatment of mice with Mycobacterium bovis bacillus Calmette-Guérin (BCG) (1 dose per animal containing 6.4 x 10(4) colony-forming units (CFu) 20-60 days beforehand) on modulation of the kinin B1 receptor agonist-induced nociception and oedema formation in the formalin test. Intraplantar (i.p.l.) co-injection of des-Arg9-bradykinin (4-32 nmol/paw) or des-Arg10-kallidin (1-15 nmol/paw), together with sub-maximal concentrations of formalin (0.01 or 0.5%), potentiated (P < 0.01) both pain phases and the paw oedema caused by formalin in animals pre-treated with saline. However, when animals were pre-treated with BCG, the dose-response curves for both B1 agonists were shifted 2 to 8-fold to the left. These B1-mediated effects peaked at 30-45 days after BCG treatment and were still elevated at 60 days after BCG injection. The pain response and oedema formation caused by i.p.l. co-injection of des-Arg9-bradykinin, together with formalin in BCG-pre-treated animals, were dose-dependently antagonised by i.p.l. co-injection of the B1 antagonist des-Arg9[Leu8]bradykinin (1-15 nmol/paw), but were not affected by the B2 antagonist Hoe 140 (10 nmol/paw). The i.p.l. co-injection of tyrosine8-bradykinin (a B2 agonist, 3-15 nmol/paw) with formalin (0.01 or 0.5%) potentiated the pain response and paw oedema in BCG and saline-pre-treated animals to the same extent (P < 0.01). The actions caused by tyrosine8-bradykinin were antagonised by Hoe 140, while des- Arg9[Leu8]bradykinin (10 nmol/paw) had no effect. Dexamethasone (0.5 mg/kg, s.c.), given every 24 h, from day 0 to 30-45, inhibited significantly the potentiation of nociceptive response and oedema formation caused by i.p.l. co-injection of formalin plus des-Arg9-bradykinin, while indomethacin (2 mg/kg, i.p.) or phenidone (30 mg/kg, i.p.), given 1 h prior, caused less inhibition. These data show that the long-term systemic treatment of mice with BCG produced dose-related potentiation of B1 receptor agonist-mediated nociception and oedema formation, without affecting similar responses caused by the B2 receptor agonist tyrosine8-bradykinin. Thus, systemic treatment of mice with BCG induces upregulation of B1 receptors, without affecting B2-mediated responses, by a mechanism that seems to be secondary to cytokine release.  相似文献   

18.
OBJECTIVE: To determine which types of kinin receptor are present in human bronchial epithelial cells we studied the capability of bradykinin to mobilize intracellular Ca2+ ([Ca2+]i) in a human bronchial epithelial cell line (16HBE cells). MATERIAL: Human bronchial epithelial cell line transformed with an original defective simian virus 40 (SV40). TREATMENT: Bradykinin (0.1 pM to 0.1 microM), des-Arg9 bradykinin (1 microM), des-Arg10) kallidin (1 microM), indomethacin (1 microM), phosphoramidon (1 microM), captopril (1 microM), des-Arg9-[Leu8]bradykinin (1 microM), HOE 140 (DArg-[Hyp3, Thi5, DTic , Oic8]-bradykinin) (1 microM), and NPC 16731 (DArg-[Hyp3, Thi5, DTic7, Tic8]-bradykinin) (1 microM). METHODS: The mobilization of [Ca2+]i was determined by the fura-2 method. Two sample Wilcoxon rank-sum (Mann-Whitney) test was used for statistical calculations. RESULTS: Bradykinin, but not the selective agonists for kinin B1 receptor des-Arg9 bradykinin and des-Arg10 kallidin, increased the mobilization of [Ca2+]i (EC50, 0.079+/-0.009nM) in 16HBE cells in a concentration-dependent manner. Pretreatment with the cyclooxygenase inhibitor indomethacin (1 microM) or the peptidase inhibitors, phosphoramidon (1 microM) or captopril (1 microM), did not affect the response to bradykinin. The kinin B1 receptor antagonist, des-Arg9-[Leu8]bradykinin (1 microM), was inactive. HOE 140 and NPC 16731, two selective antagonists of the kinin B2 receptor abolished the response to bradykinin (IC50 of HOE 140 and NPC 16731 were 0.52+/-0.037nM and 1.67 +/- 0.41 nM, respectively). CONCLUSIONS: The present data indicate the presence of kinin B2 receptors in the 16HBE cells.  相似文献   

19.
20.
The bradykinin-induced rise in intracellular Ca2+ concentration ([Ca2+]i) and the bradykinin receptor involved in this response were characterized in bovine pulmonary artery endothelial cells. It was found that bradykinin induces an intracellular biphasic Ca2+ response, consisting of a transient peak followed by an elevated plateau phase. Both bradykinin and the bradykinin B1 receptor agonist, des-Arg9-bradykinin, induced a concentration-dependent increase in [Ca2+]i, but the bradykinin-induced rise was much greater. Moreover, the bradykinin-induced [Ca2+]i rise could be inhibited by the bradykinin B2 receptor antagonists, D-Arg0[Hyp3, Thi(5,8), D-Phe7]bradykinin and Hoe 140 (D-Arg[Hyp3, Thi5, D-Tic7, Oic8]bradykinin), but not by the bradykinin B1 receptor antagonist, des-Arg9-[Leu8]bradykinin. From these results it can be concluded that a bradykinin B2 receptor is involved in this response. Furthermore, we found that the tachykinin NK1 receptor antagonist, RP67580 ([imino 1 (methoxy-2-phenyl)-2 ethyl]-2 diphenyl 7,7 perhydroisoindolone-4 (3aR, 7aR)), and its negative enantiomer, RP68651 (2-[1-imino 2-(2 methoxy phenyl) ethyl] 7,7 diphenyl 4-perhydroisoindolone (3aS-7aS)), could inhibit the bradykinin-induced [Ca2+]i response, although no functional tachykinin NK1 receptors were found. Binding studies evidenced no binding of RP67580 or RP68651 to the bradykinin receptor. We conclude that RP67580 inhibits the bradykinin-induced rise in [Ca2+]i via a bradykinin B2 receptor-independent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号