首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of the reverse water–gas shift reaction over a Cu catalyst was studied by CO2 hydrogenation, temperature-programmed reduction of the Cu catalyst and pulse reaction with QMS monitoring. In comparison with the reaction of CO2 alone, hydrogen can significantly promote the CO formation in the RWGS reaction. The formate derived from association of H2 and CO2 is proposed to be the key intermediate for CO production. Formate dissociation mechanism is the major reaction route for CO production. Cu(I) species were formed from the oxidation of Cu0 associated with CO2 dissociation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
FTIR spectra are reported of CO2 and CO2/H2 on a silica-supported caesium-doped copper catalyst. Adsorption of CO2 on a “caesium”/silica surface resulted in the formation of CO2 and complexed CO species. Exposure of CO2 to a caesium-doped reduced copper catalyst produced not only these species but also two forms of adsorbed carboxylate giving bands at 1550, 1510, 1365 and 1345 cm−1. Reaction of carboxylate species with hydrogen at 388 K gave formate species on copper and caesium oxide in addition to methoxy groups associated with caesium oxide. Methoxy species were not detected on undoped copper catalyst suggesting that caesium may be a promoter for the methanol synthesis reaction. Methanol decomposition on a caesium-doped copper catalyst produced a small number of formate species on copper and caesium oxide. Methoxy groups on caesium oxide decomposed to CO and H2, and subsequent reaction between CO and adsorbed oxygen resulted in carboxylate formation. Methoxy species located at interfacial sites appeared to exhibit unusual adsorption properties.  相似文献   

3.
Novák  É.  Fodor  K.  Szailer  T.  Oszkó  A.  Erdöhelyi  A. 《Topics in Catalysis》2002,20(1-4):107-117
Hydrogenation of CO2 was studied on 1% Rh/TiO2 reduced at different temperatures. The interaction of CO2 with the catalyst and that of the CO2+H2 mixture was also studied. FTIR and TPD measurements revealed that CO2 dissociation depends on the reduction temperature of the catalyst. In the surface reaction, besides Rh carbonyl hydride, formate groups and different carbonates and surface formyl species were also formed. The surface concentration of the formyl group depended on the reduction temperature. The initial rate of CO2 hydrogenation significantly increased with increasing reduction temperature but after some time it drastically decreased. The promotion effect of the reduction temperature was explained by the formation of oxygen vacancies on the perimeter of the Rh/TiO2 interface, which can be re-oxidized by the adsorption of CO2 and H2O.  相似文献   

4.
In situ FT-IR spectroscopy allows the methanol synthesis reaction to be investigated under actual industrial conditions of 503 K and 10 MPa. On Cu/SiO2 catalyst formate species were initially formed which were subsequently hydrogenated to methanol. During the reaction a steady state concentration of formate species persisted on the copper. Additionally, a small quantity of gaseous methane was produced. In contrast, the reaction of CO2 and H2 on ZnO/SiO2 catalyst only resulted in the formation of zinc formate species: no methanol was detected. The interaction of CO2 and H2 with Cu/ZnO/SiO2 catalyst gave formate species on both copper and zinc oxide. Methanol was again formed by the hydrogenation of copper formate species. Steady-state concentrations of copper formate existed under actual industrial reaction conditions, and copper formate is the pivotal intermediate for methanol synthesis. Collation of these results with previous data on copper-based methanol synthesis catalysts allowed the formulation of a reaction mechanism.  相似文献   

5.
Methanol synthesis from CO2 and H2 was carried out over a Cu/ZnO catalyst (Cu/Zn = 3/7) at atmospheric pressure, and the surface species formed were analyzed by diffuse reflectance FT-IR spectroscopy and temperature programmed desorption method. Two types of formate species and zinc methoxide were formed in the course of the reaction. Zinc methoxide was readily hydrolyzed to methanol. H2O formed through the reverse water gas shift reaction was suggested to be involved in the hydrolysis of zinc methoxide.  相似文献   

6.
Catalytic systems composed of copper-based oxides and alkali alkoxides are tested for low-temperature methanol synthesis in liquid phases, which involves carbonylation of methanol to methyl formate and consecutive hydrogenation of methyl formate to methanol. The effects of reaction variables on the catalytic performance are investigated under the conditions of 373-423K temperature and 1.5-5.0 Mpa pressure. The combined catalytic systems of copper chromite and potassium methoxide exhibit excellent activities for the production of methanol. Higher values of reaction temperature, initial pressure, catalyst loading, and H2/CO ratio of the feed gas lead to higher methanol productivity. In particular, the reaction temperatures and the feed gas compositions strongly influence the catalytic performance. No methanol is formed when employing a feed gas containing 2% CO2. The catalytic systems are deactivated in a short period even in a CO2-free feed gas, due to the consumption of the alkoxide component. Alkali alkoxides are consumed through reactions with trace amounts of CO2 and H2O which are formed as by-products during the course of the runs. The results also suggest that the hydrogenation step of methyl formate over copper chromite is greatly accelerated in the presence of the alkali alkoxide.  相似文献   

7.
The activity of a binary catalyst in alcoholic solvents for methanol synthesis from CO/H2/CO2 at low temperature was investigated in a concurrent synthesis course. Experiment results showed that the combination of homogeneous potassium formate catalyst and solid copper–magnesia catalyst enhanced the conversion of CO2-containing syngas to methanol at temperature of 423–443 K and pressure of 3–5 MPa. Under a contact time of 100 g h/mol, the maximum conversion of total carbon approached the reaction equilibrium and the selectivity of methanol was 99%. A reaction pathway involving esterification and hydrogenolysis of esters was postulated based on the integrative and separate activity tests, along with the structural characterization of the catalysts. Both potassium formate for the esterification as well as Cu/MgO for the hydrogenolysis were found to be crucial to this homogeneous and heterogeneous synergistically catalytic system. CO and H2 were involved in the recycling of potassium formate.  相似文献   

8.
Ethanol reforming and partial oxidation were studied on Cu/Nb2O5 and Ni/Al2O3 catalysts. Compared to the Ni/Al2O3 catalyst, the Cu/Nb2O5 catalyst presents conversion as high as Ni/Al2O3 catalyst, however, for the same level of formation of hydrogen it occurs at much lower temperature on the Cu/Nb2O5 catalyst, 200 °C lower than for the Ni/Al2O3 catalyst, with remarkable little formation of CO, which can be attributed to the strong interaction between copper and niobia. Temperature-programmed desorption (TPD-ethanol) and surface reactions (TPSR) of partial oxidation of ethanol showed formation of ethylene, acetaldehyde, ethane and mainly H2 and CO2 besides little methane. DRIFTS results are in accordance with TPD analysis and the formation of acetate species at room temperature suggests reactivity of the surface and its oxidative dehydrogenation capacity. The adsorption of ethanol gives rise to ethoxide species, which form acetate and acetaldehyde that can be oxidized to CO2 via carbonate. A comparison with reported results for Cu/Al2O3 this catalyst is promising, yielding high level of H2 with little CO production during reforming and partial oxidation reaction. The maximum H2 formation for the partial oxidation of ethanol was 41% at ratio (O2/Et) 0.8, increasing to 50% at ratio 1.5. The H2/CO is around 10 for the partial oxidation and 7 for steam reforming, which is excellent, compared to the Ni/Al2O3 catalyst with a factor 4–8 lower.  相似文献   

9.
The morphology (surface structure) of the copper component of an industrial Cu/ZnO/Al2O3 methanol synthesis catalyst has been studied by carbon monoxide temperature programmed desorption (CO TPD). The initial state morphology produced by hydrogen reduction at 513 K showed evidence of the existence of Cu(111), Cu(110) and Cu(211) surfaces. Surface oxidation of the copper by CO2 decomposition at 213 K followed by CO reduction at 473 K did not reproduce the initial state morphology, most of the Cu(110) surface being lost; at the same time there was a six-fold increase in the surface population of the (211) face. This new surface produced by CO2 decomposition at 213 K and CO reduction at 473 K was considerably less active in its ability to decompose CO2 at 213 K. Treatment of it with hydrogen at 513 K for 16 h caused the surface to reconstruct almost completely to its original state, with the Cu(110) face reappearing and the Cu(211) face being reduced in population to roughly its original value. The ability of the copper to decompose CO2 was proportionately restored. It is evident that in the synthesis of methanol using CO/CO2/H2 mixtures over Cu/ZnO/Al2O3 catalysts, the morphology of the surface of the copper will be in a continuous state of restructuring, which, depending on the conditions, has the potential to result in chaotic behaviour. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The spectroscopy and kinetics of a new low-temperature methanol synthesis method were studied by using in situ DRIFTS on Cu/ZnO catalysts from syngas (CO/CO2/H2) using alcohol promoters. The adsorbed formate species easily reacted with ethanol or 2-propanol at 443 K and atmospheric pressure, and the reaction rate with 2-propanol was faster than that with ethanol. Alkyl formate was easily reduced to form methanol at 443 K and 1.0 MPa, and the hydrogenation rate of 2-propyl formate was found to be faster than that of ethyl formate. 2-Propanol used as promoter exhibited a higher activity than ethanol in the reaction of the low-temperature methanol synthesis.  相似文献   

11.
CO2 reaction and formation pathways during Fischer–Tropsch synthesis (FTS) on a co-precipitated Fe–Zn catalyst promoted with Cu and K were studied using a kinetic analysis of reversible reactions and with the addition of 13C-labeled and unlabeled CO2 to synthesis gas. Primary pathways for the removal of adsorbed oxygen formed in CO dissociation steps include reactions with adsorbed hydrogen to form H2O and with adsorbed CO to form CO2. The H2O selectivity for these pathways is much higher than that predicted from WGS reaction equilibrium; therefore readsorption of H2O followed by its subsequent reaction with CO-derived intermediates leads to the net formation of CO2 with increasing reactor residence time. The forward rate of CO2 formation increases with increasing residence time as H2O concentration increases, but the net CO2 formation rate decreases because of the gradual approach to WGS reaction equilibrium. CO2 addition to synthesis gas does not influence CO2 forward rates, but increases the rate of their reverse steps in the manner predicted by kinetic analyses of reversible reactions using non-equilibrium thermodynamic treatments. Thus the addition of CO2 could lead to the minimization of CO2 formation during FTS and to the preferential removal of oxygen as H2O. This, in turn, leads to lower average H2/CO ratios throughout the catalyst bed and to higher olefin content and C5+ selectivity among reaction products. The addition of 13CO2 to H2/12CO reactants did not lead to significant isotopic enrichment in hydrocarbon products, indicating that CO2 is much less reactive than CO in chain initiation and growth. We find no evidence of competitive reactions of CO2 to form hydrocarbons during reactions of H2/CO/CO2 mixtures, except via gas phase and adsorbed CO intermediates, which become kinetically indistinguishable from CO2 as the chemical interconversion of CO and CO2 becomes rapid at WGS reaction equilibrium.  相似文献   

12.
The catalytic promoting effects of eleven different alcohols, as reaction medium, on the synthesis of methanol from feed gas of CO/CO2/H2 on Cu/ZnO solid catalyst were investigated. Added alcohol altered the reaction route to realize a low-temperature synthesis method where formate was an intermediate. Many alcohols showed catalytic promoting effect for methanol formation at temperature as low as 443 K, remarkably lower than that in the present industrial ICI process.  相似文献   

13.
The partial oxidation of CH3OH to CO2 and H2 over a Cu/ZnO/Al2O3 catalyst has been studied by temperature-programmed oxidation (TPO) using N2O and O2 as the oxidant. Post-reaction analysis of the adsorbate composition of the surface of the catalyst was determined by temperature-programmed desorption (TPD). The temperature dependence of the composition of the mixture of products formed by TPO was shown to depend critically on the partial pressure of the oxidant, with the highest partial pressure of oxygen used (10% O2 in He, 101 kPa—the CH3OH partial pressure was 17% throughout), producing marked non-Arrhenius fluctuations on temperature programming. Unsurprisingly, therefore, the adsorbate composition of the catalyst revealed by post-reaction TPD was also found to be determined by the partial pressure of the oxidant. Using high partial pressures of oxidant (5% and 10% O2 in He, 101 kPa), the only adsorbate detected was the bidentate formate species adsorbed on Cu. Lowering the oxygen partial pressure to 2% in He (101 kPa) revealed a catalyst surface on which the bidentate formate on Cu was the dominant intermediate with the formate on Al2O3 also being present. A further lowering of the partial pressure of the oxidant, obtained by using N2O as the oxidant (2% N2O in He, 101 kPa), resulted in a surface on which the formate adsorbed on ZnO was the dominant adsorbate with only a small coverage of the Cu by the bidentate formate.  相似文献   

14.
Methanol steam reforming was studied over several catalysts made by deposition of copper and zinc precursors onto nanoparticle alumina. The results were compared to those of a commercially available copper, zinc oxide and alumina catalyst. Temperature programmed reduction, BET surface area measurements, and N2O decomposition were used to characterize the catalyst surfaces. XRD was used to study the bulk structure of the catalysts, and XPS was used to determine the chemical states of the surface species. The nanoparticle-supported catalysts achieved similar conversions as the commercial reference catalyst but at slightly higher temperatures. However, the nanoparticle-supported catalysts also exhibited a significantly lower CO selectivity at a given temperature and space time than the reference catalyst. Furthermore, the turnover frequencies of the nanoparticle-supported catalysts were higher than that of the commercial catalyst, which means that the activity of the surface copper is higher. It was determined that high alumina concentrations ultimately decrease catalytic activity as well as promote undesirable CH2O formation. The lower catalytic activity may be due to strong Cu-Al2O3 interactions, which result in Cu species which are not easily reduced. Furthermore, the acidity of the alumina support appears to promote CH2O formation, which at low Cu concentrations is not reformed to CO2 and H2. The CO levels present in this study are above what can be explained by the reverse water-gas-shift (WGS) reaction. While coking is not a significant deactivation pathway, migration of ZnO to the surface of the catalyst (or of Cu to the bulk of the catalyst) does explain the permanent loss of catalytic activity. Cu2O is present on the spent nanoparticle catalysts and it is likely that the Cu+/Cu0 ratio is of importance both for the catalytic activity and the CO selectivity.  相似文献   

15.
《Catalysis communications》2007,8(11):1829-1833
In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to study the reaction mechanism of the formate adsorbed species with ethanol to form the ethyl formate on Cu/ZnO catalyst surface in a novel low-temperature methanol synthesis process. The results indicate that the formate adsorbed species were firstly formed by CO/CO2/H2 adsorbed on Cu/ZnO catalyst, followed by rapid reaction with ethanol to form ethyl formate. It was found that the species reacted with formate adsorbed species were ethanol in gas phase rather than adsorbed ethoxy species. The reaction of the adsorbed formate species with ethanol on Cu/ZnO catalyst surface proceeded according to Rideal-type mechanism, not Langmuir–Hinshelwood mechanism.  相似文献   

16.
The hydrogenation of CO2 was studied on supported noble metal catalysts in the presence of H2S. In the reaction gas mixture containing 22 ppm H2S the reaction rate increased on TiO2 and on CeO2 supported metals (Ru, Rh, Pd), but on all other supported catalysts or when the H2S content was higher (116 ppm) the reaction was poisoned. FTIR measurements revealed that in the surface interaction of H2 + CO2 on Rh/TiO2 Rh carbonyl hydride, surface formate, carbonates and surface formyl were formed. On the H2S pretreated catalyst surface formyl species were missing. TPD measurements showed that adsorbed H2S desorbed as SO2, both from TiO2-supported metals and from the support. IR, XP spectroscopy and TPD measurements demonstrated that the metal became apparently more positive when the catalysts were treated with H2S and when the sulfur was built into the support. The promotion effect of H2S was explained by the formation of new centers at the metal/support interface.  相似文献   

17.
The space velocity had profound and complicated effects on methanol synthesis from CO2/CO/H2 over Cu/ZnO/Al2O3 at 523 K and 3.0MPa. At high space velocities, methanol yields as well as the rate of methanol production increased continuously with increasing CO2 concentration in the feed. Below a certain space velocity, methanol yields and reaction rates showed a maximum at CO2 concentration of 5–10%. Different coverages of surface reaction intermediates on copper appeared to be responsible for this phenomenon. The space velocity that gave the maximal rate of methanol production also depended on the feed composition. Higher space velocity yielded higher rates for CO2/ H2 and the opposite effect was observed for the CO/H2 feed. For CO2/CO/H2 feed, an optimal space velocity existed for obtaining the maximal rate.  相似文献   

18.
The effect of various modifiers on the performance of a commercial Cu/ZnO/Al2O3 catalyst in methanol synthesis from CO2/H2 and CO/H2 at 523 K and 30 bar has been studied. Several modifiers improved significantly the rate of methanol formation from CO2/H2, while all modified catalysts showed decreased rates for the synthesis from CO/H2 in comparison with the unmodified Cu/ZnO/Al2O3 catalyst. The synthesis rates from both CO2/H2 and CO/H2 correlated with the oxygen coverage of copper surface measured after the reaction by N2O titration.  相似文献   

19.
The effect of the support nature on the performance of Pd catalysts during partial oxidation of ethanol was studied. H2, CO2 and acetaldehyde formation was favored on Pd/CeO2, whereas CO production was facilitated over Pd/Y2O3 catalyst. According to the reaction mechanism, determined by DRIFTS analyses, some reaction pathways are favored depending on the support nature, which can explain the differences observed on products distribution. On Pd/Y2O3 catalyst, the production of acetate species was promoted, which explain the higher CO formation, since acetate species can be decomposed to CH4 and CO at high temperatures. On Pd/CeO2 catalyst, the acetaldehyde preferentially desorbs and/or decomposes to H2, CH4 and CO. The CO formed is further oxidized to CO2, which seems to be promoted on Pd/CeO2 catalyst.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号