首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of supercritical water on upgrading reaction of oil sand bitumen   总被引:1,自引:0,他引:1  
The advantages of supercritical water (SCW) as a reaction medium for upgrading oil sand bitumen were investigated through a comprehensive analysis of the output product, which includes gaseous products, middle distillate, distillation residue, and coke. Canadian oil sand bitumen mined by the steam assisted gravity drainage method was treated in an autoclave at 420-450 °C and 20-30 MPa for up to 120 min with three kinds of reaction media: SCW, high-pressure nitrogen, and supercritical toluene. The yields of gaseous products indicated that a very small amount of water was involved in the upgrading reaction. The analytical results of the middle distillate fractions were almost the same using water and nitrogen at 450 °C. The distillation residues produced in SCW had lower molecular weight distributions, lower H/C atomic ratios, higher aromaticities, and consequently more condensed structures compared to those produced in nitrogen. The coke produced using SCW also had lower H/C values and higher aromaticities. Judging from all the analytical results, the upgrading of bitumen by SCW reaction was primarily considered to be physical in nature. As a result, it is possible to highly disperse the heavy fractions by SCW. This dispersion effect of SCW led to intramolecular dehydrogenation of the heavier component and prevention of recombination reactions, and consequently gave the highest conversion.  相似文献   

2.
This article deals with a study of bitumen conversion (the gross-formula CH1.47N0.01S0.007) in a supercritical water (SCW) flow continuously supplied at the bottom of the vertically located tubular reactor. At the first stage, bitumen was continuously supplied from the top of the reactor into a counter-current SCW flow (400 °C, 30 MPa) for 60 min. At the second stage (after ceasing the supply of bitumen into the reactor), SCW was pumped through the layer of bitumen residue at uniform (2.5 °C/min) temperature increase from 400 to 700 °C at 30 MPa. The amount and composition of the liquid and volatile conversion products were measured. It is revealed that during bitumen supply into the reactor and subsequent pumping of SCW through the layer of bitumen residue in the temperature increasing mode from 400 to 500 °C, the yields of liquid conversion products are equal to 26.9 and 45.4%, respectively, relative to the weight of bitumen supplied into the reactor. Oils are the major components of these liquid products. Participation of H2O molecules in redox reactions became evident due to the formation of CO and CO2 even at 400 °C. A significant increase in the yields of H2, CH4, and CO2 are detected at T > 600 °C. Based on the sulfur balance, it can be stated that the degree of bitumen desulfurization at 400–700 °C due to sulphur removal in form of H2S accounts for 21.6 wt.% A solid carbonaceous bitumen residue, obtained after SCW conversion, is characterized by high specific surface (224 m2/g).  相似文献   

3.
Experiments involving the supercritical extraction of bitumen using various solvent mixtures were carried out in a 2-l batch autoclave to determine the effect of modifier type and concentration on deasphalted oil (DAO) yield and quality. Athabasca bitumen was used as the feedstock and n-pentane was used as the primary solvent for extraction. Acetone, toluene, methanol and ethyl acetate were each added to n-pentane as modifiers in different concentrations to form the solvent mixtures. Extraction temperatures and pressures were maintained at around 200 °C and 1100 psi to achieve supercritical conditions for solvents, and the solvent-to-feed volume ratio was kept around 6.5. Higher DAO yields were obtained with increasing modifier concentrations in n-pentane. DAO yields ranged from 79 to 92 wt.% of the bitumen, with n-pentane/toluene mixtures providing the highest yields and n-pentane/methanol mixtures producing the lowest. Increases in DAO yield were accompanied by higher nickel, vanadium, nitrogen, sulfur and microcarbon residue content in DAO. Moreover, it was found that n-pentane/methanol and n-pentane/acetone solvent mixtures had lower selectivities for metals impurities than the other modifiers, while n-pentane/toluene had the highest selectivities.  相似文献   

4.
In this study, we show the results of partial oxidation experiments of n-hexadecane (n-C16) and polyethylene (PE) in supercritical water (SCW). The experiments were carried out at 673 or 693 K of reaction temperature and 5 or 30 min of reaction time using a 6 cm3 of a batch type reactor. Water density ranged from 0.1 to 0.52 g/cm3 (water pressure: 20–40 MPa). The loaded amount of oxygen was set to 0.3 of the ratio of oxygen atom to carbon atom. Some experiments were made using CO instead of oxygen for the partial oxidation of n-C16 and PE to explore the effect of water gas shift reaction. In the results of partial oxidation of n-C16, the yield of CO and some compounds containing oxygen atoms, such as aldehydes and ketones increased with increasing water density. Moreover, 1-alkene/ n-alkane ratio in the products decreased with increasing water density. The 1-alkene/n-alkane ratio was lower than that of pyrolysis in SCW. Also for the case of PE experiments, in dense SCW (0.42 g/cm3), the 1-alkene/n-alkane ratio in partial oxidation was lower than that in SCW pyrolysis. In the case of CO experiments for n-C16 and PE, 1-alkene/n-alkane ratio was a little lower than that of pyrolysis in SCW. These results show that the yield of n-alkane, which is a hydrogenated compound, was higher through water gas shift reaction in SCW and also through partial oxidation in SCW. Therefore, these results suggest the possibility of hydrogenation of hydrocarbon through partial oxidation followed by the water gas shift reaction.  相似文献   

5.
Demand for light hydrocarbons has been steadily increasing in the market with a corresponding decrease in heavy hydrocarbon demand. Therefore, there is a need to develop environmentally friendly and efficient technologies for conversion of heavy molecular weight hydrocarbons. Supercritical fluids (SCF) are attracting increased attention as solvents for green chemistry and among those supercritical water (SCH2O) is promising for the upgrading of heavy hydrocarbons. Because of a sharp decrease in its dielectric constant, water loses its polarity when brought to the supercritical conditions and its properties starts to resemble the properties of hydrocarbons and becomes an excellent solvent for organic compounds. Moreover, increased ionic product of water leads to an increasing [H3O+] concentration and thus promotes the reactions requiring the addition of an acid. Solvation power enables the extraction of lighter compounds while increased [H3O+] concentration makes the reactive extractions of heavy hydrocarbons possible. As a result of its favorable properties, a wide variety of process intensification studies have been carried out using near critical or SCH2O such as combined distillation-cracking-fractionation and in some cases even without the utilization of catalysts and/or hydrogen. In this review, recent advances on reactions of hydrocarbons occurring in a SCH2O environment will be highlighted. Fundamental aspects of these reactions including their thermodynamics and kinetics will be discussed. Experimental and theoretical developments on phase equilibria of relevant water–hydrocarbons systems will be presented.  相似文献   

6.
The autoprotolysis constant KHS of formic acid/water mixtures as solvent has been calculated from acid-base potentiometric titration curves. A correlation of the acidity scale pKHS of each medium versus pure water has been implemented owing to the Strehlow R0(H+) electrochemical redox function. The results show that formic acid/water mixtures are much more dissociated than pure water; such media are sufficiently dissociated to allow electrochemical measures without addition of an electrolyte. It has also been shown that for a same H+ concentration the activity of protons increases with formic acid concentration. For more than 80 wt.% of formic acid the acidity is sufficiently increased to locate the whole acidity scale pKHS in the super acid medium of the generalized acidity scale pHH2O.  相似文献   

7.
Takafumi Sato  Kunio Arai  Flora T.T Ng 《Fuel》2003,82(10):1231-1239
Supercritical water and supercritical water partial oxidation treatments were applied to the upgrading of asphalt. Asphalt was converted at 613-673 K, 0-0.5 g/cm3 water density under argon or air atmosphere. Under an argon atmosphere and 0.5 g/cm3 water density, both the asphaltene conversion and desulfurization increased with increasing temperature. At 673 K, the asphaltene conversion and the yield of CO2 increased with an increasing water density. Water apparently participated in the reaction and its hydrogen was used for capping the free radicals generated during the upgrading of asphalt resulting in an increased yield of maltene. Under an air atmosphere at 673 K, asphaltene conversion was lower but desulfurization was higher than those obtained in an argon atmosphere.  相似文献   

8.
The possibility of using methanol or formic acid oxidation as the anode process in zinc electrowinning was examined. The activity for methanol and formic acid oxidation on Pt coated high surface area electrodes was investigated over 36 h, at a current density used in industry. The activity could be maintained at a constant potential level in a synthetic electrowinning electrolyte if the current was reversed for short periods. During the tests, the anode potential was, more than 1.2 V below the potential for the oxygen evolving lead anodes used in modern zinc electrowinning. The lowered anode potential would lead to a significant energy reduction. However, tests in industrial electrolyte resulted in a very low activity for both methanol and formic acid oxidation. The low activity was shown to be caused mainly by chloride impurities. A reduction of the chloride content below 10−5 M is needed in order to obtain sufficient activity for methanol oxidation on Pt for use in zinc electrowinning. Pt and PtRu electrodes were compared regarding their activity for methanol oxidation and the latter was shown to be more affected by chloride impurities. However, at a potential of 0.7 V vs NHE, with a chloride content of 10−4 M, formic acid oxidation on PtRu gives the highest current density.  相似文献   

9.
Molecular dynamics simulations were performed to investigate the dissociations of water, NaOH and HCl in water at constant density of 0.9 g cm−3 at near-critical and supercritical temperatures. Results were in good qualitative agreement with available data, showing increased temperature favouring all dissociations. The dissociation of water was favoured by more negative values of U/T and an increasing entropy tem, whereas the dissociation of HCl showed both decreasing U/T and entropy. NaOH showed an increasing value of U/T which was dominated by an increasing entropy term. Differences in the energy contributions were attributed to the change in solute charges upon dissociation.  相似文献   

10.
Surface-modified zero-valent copper nanoparticles (CuNPs) are of interest as conductive inks for applications in printed electronics. In this work, we report on the synthesis, stability and characterization of CuNPs formed with a continuous supercritical hydrothermal synthesis method. The precursor, copper formate, was fed as an aqueous solution with polyvinylpyrrolidone (PVP) surface modifier and mixed with an aqueous water and formic acid stream to have reaction conditions of 400 °C, 30 MPa and 1.1 s mean residence time. The reaction pathway seemed to proceed step-wise as the hydrolysis of copper formate, followed by dehydration to oxide products and subsequent reduction by hydrogen derived from precursor and formic acid decomposition. The formed surface-modified zero-valent CuNPs had particle sizes of ca. 18 nm, were spherical in shape and contained no oxide contaminants. The formed CuNPs were found to exhibit long-term (>1 year) stability in ethanol as evaluated by shifts in the surface plasmon resonance band of product solutions. Conductive films (0.33 μm thickness) prepared with the CuNPs had a resistivity of 16 μΩ cm. The methods reported in this work show promise for producing conductive inks for use in practical printed electronics.  相似文献   

11.
The effects of water density on the acid-catalytic properties of TiO2 and WO3/TiO2 catalysts in supercritical water at 400 °C were investigated by using the kinetic analysis of the dehydration reaction of glycerol. The reaction selectivity of TiO2 and WO3/TiO2 catalysts and the apparent-reaction orders for water indicated that the acid-catalytic properties of these two catalysts show different dependence on water density. In the reaction using TiO2, the contribution of Lewis acid sites in TiO2 was large at a low water density, while the contribution of Brönsted acid sites in TiO2 increased with increasing water density. On the other hand, the reaction using WO3/TiO2 was mainly catalyzed by Brönsted acid sites in WO3/TiO2 even at a low water density, and the nature of Lewis/Brönsted acid sites in WO3/TiO2 was not influenced by the water density.  相似文献   

12.
The conversions of sulfur-rich asphaltite (the gross-formula CH1.23N0.017S0.037O0.01) in supercritical water (SCW) flow at 400 °C, 30 MPa without and with addition of aluminum and zinc shavings to asphaltite have been studied. At SCW conversion of asphaltite without addition of metals the yields of volatile and liquid products were found to be equal to 10.3 and 46.0%, respectively. The amount of oil in the liquid product was by 1.6 times higher than that in raw asphaltite. Hydrogen evolution during the oxidation of 〈Al〉 and 〈Zn〉 by supercritical water provided for the hydrogenation of asphaltite in situ. When 〈Al〉 and 〈Zn〉 were added, the portion of the insoluble conversion residue decreased from 44.5 up to 11.3 and 26.3%, respectively. The degree and efficiency of asphaltite hydrogenation with addition of 〈Al〉 were higher than the ones with addition of 〈Zn〉. The amount of O-containing substances in the products and the conversion residue was found to have increased as compared with raw asphaltite. At conversion without addition of metals, the bulk of oxygen was mainly concentrated in the conversion residue, while with addition of 〈Al〉 and 〈Zn〉 it was detected in the composition of CO and CO2. According to the GC–MS, IR and NMR 1H spectroscopy data, addition of metals to asphaltite resulted in decrease in the content of sulfoxides and carbonyl-containing substances and in increase in the content of polyaromatic substances in the liquid products. When 〈Al〉 was added to asphaltite, more than 70% of sulfur passed into H2S and when 〈Zn〉 was added, more than 60% of sulfur passed into ZnS.  相似文献   

13.
Compared to benchmark crude oils, bitumen does not respond well to conventional upgrading processes. In order to improve our understanding of this problem, we compare the chemical and physical properties of fractions from super critical fluid extraction of bitumen pitch with the corresponding fractions of residua from Venezuelan heavy oil, a Saudi Arabian light crude and a Chinese Daqing conventional crude.Relatively minor differences in chemical structure were observed between the corresponding residua fractions from Athabasca bitumen, Venezuelan heavy oil and Saudi Arabian light crude. Only the Chinese Daqing showed significant variance; this sample is much more aliphatic and has greater geometrical dimensions than the corresponding samples from the other residua.The end-cut from Athabasca bitumen pitch contained ultra-fine solids together with much higher levels of nickel, vanadium and nitrogen than the conventional crude end-cuts. These components are among the most intractable in upgrading and could be responsible for the problems encountered in bitumen upgrading, especially by catalytic processes.  相似文献   

14.
The liquefaction of liptobiolith coal in water vapor and supercritical water (SCW) flow at uniform increase in temperature from 300 up to 470 °C and in SCW flow at 400 °C (30 MPa) with addition of zinc shavings to coal has been investigated. Temperature dependences of the yield of liquid and volatile products and kinetic parameters of the process have been obtained. The yields of oil, resin, asphaltene and volatile products in relation to the coal organic matter (COM) are 23.2, 16.1, 5.1 and 14.1%, respectively. CO2, CO, H2S and C1–C4 alkanes prevail in the composition of volatile products. The generation of oil, resin and asphaltene are found to have occurred in terms of the simultaneous chemical reactions of cleavage of the COM aliphatic CC bonds, while the volatile products result from the consecutive transformations of the COM components in the bulk and SCW solution. Participation of H2O molecules in thermochemical transformations of COM leads to increase in the oxygen amount in the conversion products and residue by 13.2%. Hydrogen and heat evolution during zinc oxidation by SCW provides for the hydrogenation of COM in situ. Addition of zinc to coal results in increase in the volatile products yield up to 48.6% and decrease in the conversion residue yield up to 20.8%. Under these conditions the yield of resin does not change, while the yields of oil and asphaltene decrease up to 21.2 and 2.5%, respectively. Based on the sulfur balance it is revealed that ≈40% of sulfur atoms pass into ZnS owing to the reactions of H2S with Zn and ZnO resulting in the removal of H2S from the volatile conversion products.  相似文献   

15.
Acid catalyzed reactions of 1-octene on TiO2 in sub- and supercritical water were investigated (T = 250-450 °C, P = 11-33 MPa). The main products were 2-octene and 2-octanol. Additionally, other liner C8 alkenes and liner secondary C8 alcohols were produced as by-products. Through kinetic analysis, acid catalyzed reactions can divide into the reaction catalyzed by Lewis acidic sites on TiO2 and the reaction catalyzed by protons produced by the dissociation of water molecules. Each type of the reaction is affected by water density or ionic product of water, respectively, therefore, reaction mechanism changes with temperature and pressure. From the contribution of each reaction type, the temperature dependence of cis/trans ratio of produced 2-octene could also be explained.  相似文献   

16.
Supercritical hydrothermal syntheses of metal nanoparticles were investigated. Organic metal salt and hydrogen gas produced by water catalyzed decomposition of formic acid was employed as metal sources and reduction agent, respectively. The formation of iron was verified by measuring the magnetic property of the products by superconducting quantum interference device (SQUID) magnetometer as well as crystallographic analysis by X-ray diffraction (XRD). As predicted by the free energy calculation of reduction of metal oxides by hydrogen molecule, silver, palladium, copper, nickel and cobalt nanoparticles were synthesized without using surface modifier, whereas, iron could be synthesized at small yield. The main product was iron oxides (mainly magnetite). In order to increase the yield of iron, hexanoic acid was employed as an in situ surface modifier of the synthesis. The surface modification lessened the size of the synthesized nanoparticles and increased the yield of iron. The optimum condition for iron synthesis was also investigated, as a result, 7.6% yield of iron was achieved.  相似文献   

17.
The oxidation of formic acid was examined by cyclic voltammetry and chronoamperometry in order to determine the rate of catalytic activity (reaction turnover) as a function of surface crystallography on preferentially oriented (electrochemically modified) platinum electrodes. The resulting turnover rates indicated a maximum fourfold current enhancement for an approximately 60% (111)-oriented surface versus a polycrystalline surface, suggesting that preferentially oriented electrodes are of potential practical significance.  相似文献   

18.
Destruction of 1,1,2-trichlorotrifluoroethane (CFC113) in supercritical and subcritical water was performed over a wide range of pressure at 673 K. The hydrolysis reaction of CFC113 in the supercritical water could lead to complete destruction of CFC113, while the CFC113 destruction below the critical pressure of water was quite low. The Cl destruction yields were higher than those of F over the whole pressure range including both supercritical and subcritical regions, which implies that the bonding energy of F on the backbone of CFC113 is stronger than that of Cl . The destruction yields represented by two ions were found to have the linear dependency on the reduced water density.  相似文献   

19.
超临界水氧化技术是一种快速彻底降解废水中有机物质的新型处理技术。在超临界水氧化有机物中 ,乙酸被认为是一种中间产物 ,乙酸氧化是反应速率的控制步骤 ,其氧化动力学的研究对反应器设计具有重要意义。大部分研究都集中在动力学参数和反应条件如温度、压力、密度和停留时间上。最近的研究发现加入二氧化锰等催化剂 ,可缓和反应温度、压力条件 ,以达到高效节能的目的。综述了目前在超临界水氧化乙酸动力学方面的研究进展。对连续平推流或间歇反应器中实验数据用幂指数曲线拟合得到的动力学方程表明 ,乙酸氧化为一级反应  相似文献   

20.
Use of supercritical water (SCW) as a medium for oxidation reactions, conversion of organic materials to gaseous or liquid products, and for organic and inorganic synthesis processes, has been the subject of extensive research, development, and some commercial activity for over 25 years. A key aspect of the technology concerns the identification of materials, component designs, and operating techniques suitable for handling the moderately high temperatures and pressures and aggressive environments present in many SCW processes. Depending upon the particular application, or upon the particular location within a single process, the SCW process environment may be oxidizing, reducing, acidic, basic, nonionic, or highly ionic. Thus, it is difficult to find any one material or design that can withstand the effects of all feed types under all conditions. Nevertheless, several approaches have been developed to allow successful continuous processing with sufficient corrosion resistance for an acceptable period of time. The present paper reviews the experience to date for methods of corrosion control in the two most prevalent SCW processing applications: supercritical water oxidation (SCWO) and supercritical water gasification (SCWG).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号