首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first wall of an international thermonuclear experimental reactor (ITER) test blanket module (TBM) is a multilayered component consisting of plasma facing armor and structural materials including the cooling channels. One of the main issues about the R&D on the TBM is to develop the joining technologies for a fabrication of the TBM first wall. The objectives of this study are to optimize the hot isostatic pressing (HIP) conditions and the interlayer combination for the fabrication of beryllium (Be)/ferritic martensitic steel (FMS) joints without a degradation of the mechanical properties of the FMS. Effects of HIP joining conditions including the temperature and interlayer types were investigated. The HIP temperature was selected for the anticipated tempering condition for FMS to avoid a grain coarsening which would deteriorate the mechanical properties of FMS. Several interlayer materials were applied in order to manufacture high strength joints. Be and FMS were joined successfully by the application of a Ti/Cu interlayer and it showed a relatively high bending strength, 257 MPa, among the interlayer types studied. The fracture was caused by a delamination of the reaction layer between FMS and the coated interlayer without a plastic deformation. This paper summarizes the results of a Be/FMS joints manufacturing and an investigation of their properties.  相似文献   

2.
India, under its breeding blanket R&D program for DEMO, is focusing on the development of two tritium breeding blanket concepts; namely the lead-lithium-cooled ceramic breeder and the helium-cooled ceramic breeder (HCCB). The study presented in this paper focuses on the neutronic design analysis and optimization from the tritium breeding perspective of the HCCB blanket. The Indian concept has an edge-on configuration and is one of the variants of the helium-cooled solid breeder blanket concepts proposed by several partner countries in ITER. The Indian HCCB blanket having lithium titanate (Li2TiO3) as the tritium breeder and beryllium (Be) as the neutron multiplier with reduced-activation ferritic/martensitic steel structure aims at utilizing the low-energy neutrons at the rear part of the blanket. The aim of the optimization study is to minimize the radial blanket thickness while ensuring tritium self-sufficiency and provide data for further neutronic design and thermal-hydraulic layout of the HCCB blanket. It is found that inboard and outboard blanket thicknesses of 40 cm and 60 cm, respectively, can give a tritium breeding ratio (TBR) >1.3, with 60% 6Li enrichment, which is assumed to be sufficient to cover potential tritium losses and associated uncertainties. The results also demonstrated that the Be packing fraction (PF) has a more profound impact on the TBR as compared to 6Li enrichment and the PF of Li2TiO3.  相似文献   

3.
The basic definition and development strategy of the DEMO plant based on the Chinese fusion power plant (FPP) program are presented briefly. A conceptual design study of fusion HCSB-DEMO reactor with a fusion power of 2550 MW and a neutron wall loading of 2.3 MW/m2 is performed recently. Three sets parameters of core plasma for different DEMO design objectives are proposed. A helium-cooled blanket system with ceramic breeder (Li4SiO4), the structure material of low-activation ferritic steel (LAF/M) and Be neutron multiplier based on Chinese ITER HCSB-TBM design foundation are considered. The design parameters, preliminary analyses and the basic structure as well as development strategy of HCSB-DEMO reactor are introduced.  相似文献   

4.
The present work aims to investigate the susceptibility of ferritic/martensitic steels of different strength to the embrittlement of liquid Pb-Bi eutectic (LBE). Slow strain rate tensile (SSRT) tests on specimens of the T91 steel in three tempering conditions at 500, 600 and 760 °C were conducted in Ar and in LBE at temperatures between 150 and 500 °C. For the specimens tempered at 760 °C (the normal tempering condition) the susceptibility of the steel to LBE embrittlement appeared at temperatures between 300 and 450 °C. With increasing the strength of specimens by lowering the tempering temperature, specimens tempered at 600 and 500 °C demonstrated more pronounced embrittlement effects, reflected by wider and deeper ‘ductility-troughs’. The results suggest that ferritic/martensitic steels with higher strength are more susceptible to LBE embrittlement. The LBE embrittlement effects can be attributed to the decrease of fracture stress resulted from the ‘weakening inter-atomic bond’ by LBE contacting at crack tips.  相似文献   

5.
This work was focused on the neutronic calculation of the nuclear parameters (neutron spectrum, displacement per atom (DPA), gas production, tritium breeding ratio (TBR), nuclear heating) for structural materials in the first wall (FW) and fuel clad (made of ferritic/martensitic steels, vanadium alloy, silicon carbide, copper alloy, and stainless steel) of an experimental hybrid reactor using the most current Monte Carlo Neutron-Particle Transport code MCNP5 1.4. Neutronic calculations were performed using a (DT) fusion driver hybrid reactor under a neutron wall loud of 2.25 MW/m2 by full reactor power for one year. Obtained results were compared with three different data libraries (ENDF/B-V, ENDF/B-VI and CLAW-IV). TBR values in the reactor blanket for all investigated materials became greater than the minimum requirement (TBR > 1.05). Nuclear parameters like DPA, He-production and nuclear heating were considered as radiation damage limits for structural materials, copper alloy (Cu0.5Cr0.3Zr) showed better performance than all investigated materials.  相似文献   

6.
The effects of evaluated nuclear data files on neutronics characteristics of a fusion–fission hybrid reactor have been analyzed; three-dimensional calculations have been made using the MCNP4C Monte Carlo Code for ENDF/B-VII T = 300 K, JEFF-3.0 T = 300 K, and CENDL-2 T = 300 K evaluated nuclear data files. The nuclear parameters of a fusion–fission hybrid reactor such as tritium breeding ratio, energy multiplication factor, fissile fuel breeding and nuclear heating in a first wall, blanket and shield have been investigated for the mixture components of 90% Flibe (Li2BeF4) and 10% UF4 for a blanket layer thickness of 50 cm. The contributions of each isotope of Flibe (6Li, 7Li, 19F, 9Be) and UF4 (235U, 238U) to the integrated parameter values were calculated. The neutron wall load is assumed to be 10 MW/m2.  相似文献   

7.
Through a consideration of the requirements for a DEMO-relevant blanket concept, Korea (KO) has proposed a He cooled molten lithium (HCML) blanket with ferritic steel (FS) as a structural material in the International Thermonuclear Experimental Reactor (ITER) program. The preliminary design and its performance of KO HCML test blanket module (TBM) are introduced in this paper. It uses He as a coolant at an inlet temperature of 300 °C and an outlet temperature up to 400 °C and Li is used as a tritium breeder by considering its potential advantages. Two layers of graphite are inserted as a reflector in the breeder zone to increase the tritium breeding ratio (TBR) and the shielding performances. A 3-D Monte Carlo analysis is performed with the MCCARD code for the neutronics and the total TBM power is designed to be 0.739 MW at a normal heat flux from the plasma side. From the analysis results with CFX-10 for the thermal-hydraulics, the He cooling path is determined and it shows that the maximum temperature of the first wall does not exceed 550 °C at the structural materials and the coolant velocities are 45 and 11.5 m/s in the first wall and breeding zone, respectively. The obtained temperature data is used in the thermal-mechanical analysis with ANSYS-10. The maximum von Mises equivalent stress of the first wall is 123 MPa and the maximum deformation of it is 3.73 mm, which is lower than the maximum allowable stress.  相似文献   

8.
One of the most important missions of ITER is to provide a test bed for breeding blanket modules, which are called as test blanket module (TBM). JAEA has been extensively developing a water-cooled solid breeder test blanket module (WCSB TBM) for ITER. JAEA developed fabrication technology of F82H rectangular cooling tubes, and has successfully fabricated the near-full scale first wall mock-up of WCSB TBM by hot isostatic press (HIP) technique, which is fully made of F82H. The mock-up has been high-heat flux tested in the DATS facility in JAEA, which is an ion beam test facility. The inlet temperature of the cooling water is about 280 °C with 15 MPa, which is almost the same as the WCSB TBM design conditions. The mock-up has endured a heat load of 0.5 MW/m2, 30 s for 80 thermal cycles. Neither hot spots nor thermal degradation have been observed.  相似文献   

9.
In the framework of the materials domain DEMETRA in the European Transmutation research and development project EUROTRANS, irradiation experiment IBIS has been performed in the High Flux Reactor in Petten. The objective was to investigate the synergystic effects of irradiation and lead bismuth eutectic exposure on the mechanical properties of structural materials and welds. In this experiment ferritic martensitic 9 Cr steel, austenitic 316L stainless steel and their welds have been irradiated for 250 Full Power Days up to a dose level of 2 dpa. Irradiation temperatures have been kept constant at 300 °C and 500 °C.During the post-irradiation test phase, tensile tests performed on the specimens irradiated at 300 °C have shown that the irradiation hardening of ferritic martensitic 9 Cr steel at 1.3 dpa is 254 MPa, which is in line with the irradiation hardening obtained for ferritic martensitic Eurofer97 steel investigated in the fusion program. This result indicates that no LBE interaction at this irradiation temperature is present. A visual inspection is performed on the specimens irradiated in contact with LBE at 500 °C and have shown blackening on the surface of the specimens and remains of LBE that makes a special cleaning procedure necessary before post-irradiation mechanical testing.  相似文献   

10.
In this work the void swelling behavior of a 9Cr ferritic/martensitic steel irradiated with energetic Ne-ions is studied. Specimens of Grade 92 steel (a 9%Cr ferritic/martensitic steel) were subjected to an irradiation of 20Ne-ions (with 122 MeV) to successively increasing damage levels of 1, 5 and 10 dpa at a damage peak at 440 and 570 °C, respectively. And another specimen was irradiated at a temperature ramp condition (high flux condition) with the temperature increasing from 440 up to 630 °C during the irradiation. Cross-sectional microstructures were investigated with a transmission electron microscopy (TEM). A high concentration of cavities was observed in the peak damage region in the Grade 92 steel irradiated to 5 dpa, and higher doses. The concentration and mean size of the cavities showed a strong dependence on the dose and irradiation temperature. Enhanced growth of the cavities at the grain boundaries, especially at the grain boundary junctions, was observed. The void swelling behavior in similar 9Cr steels irradiated at different conditions are discussed by using a classic void formation theory.  相似文献   

11.
Oxide-dispersion-strengthened (ODS) steels are attractive materials for application as fuel cladding in fast reactors and first-wall material of fusion blanket. Recent studies have focused more on high-chromium ferritic (12–18 wt% Cr) ODS steels with attractive corrosion resistance properties. However, they have poor material workability, require complicated heat treatments for recrystallization, and possess anisotropic microstructures and mechanical properties. On the other hand, low-chromium ferritic/martensitic (8–9 wt% Cr) ODS steels have no such limitations; nonetheless, they have poor corrosion resistance properties. In our work, we developed a corrosion-resistant coating technique for a low-chromium ferritic/martensitic ODS steel. The ODS steel was coated with the 304 or 430 stainless steel, which has better corrosion resistances than the low-chromium ferritic/martensitic ODS steels. The 304 or 430 stainless steel was coated by changing the canning material from mild steel to stainless steel in the conventional material processing procedure for ODS steels. Microstructural observations and micro-hardness tests proved that the stainless steels were successfully coated without causing a deterioration in the mechanical property of the low-chromium ferritic/martensitic ODS steel.  相似文献   

12.
Diffusion couple tests of U-Zr or U-Zr-Ce alloys vs. ferritic martensitic steels such as HT9 or T91 were carried out in order to evaluate the performance of the diffusion barrier candidates. Elemental metal foils of Zr, Nb, Ti, Mo, Ta, V and Cr were very effective in inhibiting interdiffusion between these fuels and steels. Eutectic melting between the fuels and steels was not observed in any of the diffusion couples using these diffusion barrier foils at annealing temperatures up to 800 °C. Among the metallic foils evaluated in this study, V and Cr exhibited the most promising performances as a diffusion barrier material for eliminating the fuel cladding chemical interaction problem. However, Zr, Nb and Ti showed an active interaction with the fuel mainly due to the large U solubility.  相似文献   

13.
To understand the combined effect of plasma heating and neutron heating loadings, the distributions of temperature, stress, and strain in different two-dimensional first wall panel models under normal ITER operation condition were simulated using finite element method. The maximum temperature occurs at the Be armor, and reaches 461 °C. High thermal stresses (in the range of 80-200 MPa) are found at the interface between the Be armor and the CuCrZr layer. The maximum thermal stress reaches 324 MPa in the SS316L cooling tube (20 mm diameter), exceeding its yield strength and resulting in a maximum strain of about 1.7% at the tube inner surface. These simulation results are useful for the design and operation of ITER.  相似文献   

14.
Irradiation damage caused by neutron irradiation below 425-450 °C of 9-12% Cr ferritic/martensitic steels produces microstructural defects that cause an increase in yield stress. This irradiation hardening causes embrittlement observed in a Charpy impact test as an increase in the ductile-brittle transition temperature. Little or no change in strength is observed in steels irradiated above 425-450 °C. Therefore, the general conclusion has been that no embrittlement occurs above these temperatures. In a recent study, significant embrittlement was observed in F82H steel irradiated at 500 °C to 5 and 20 dpa without any change in strength. Earlier studies on several conventional steels also showed embrittlement effects above the irradiation-hardening temperature regime. Indications are that this embrittlement is caused by irradiation-accelerated or irradiation-induced precipitation. Observations of embrittlement in the absence of irradiation hardening that were previously reported in the literature have been examined and analyzed with computational thermodynamics calculations to illuminate and understand the effect.  相似文献   

15.
The development of a Water Cooled Ceramic Breeder (WCCB) Test Blanket Module (TBM) is being performed as one of the most important steps toward DEMO blanket in Japan. For the TBM testing and evaluation toward DEMO blanket, the module fabrication technology development by a candidate structural material, reduced activation martensitic/ferritic steel, F82H, is one of the most critical items from the viewpoint of realization of TBM testing in ITER. In Japan, fabrication of a real scale first wall, side walls, a breeder pebble bed box and assembling of the first wall and side walls have succeeded. Recently, the real scale partial mockup of the back wall was fabricated. The fabrication procedure of the back wall, whose thickness is up to 90 mm, was confirmed toward the fabrication of the real scale back wall by F82H. Important key technologies are almost clarified for the fabrication of the real scale TBM module mockup. From the view point of testing and evaluation, development of the technology of the blanket tritium recovery, development of advanced breeder and multiplier pebbles and the development of the blanket neutronics measurement technology are also performed. Also, tritium production and recovery test using D-T neutron in the Fusion Neutronics Source (FNS) facility has been started as the verification test of tritium production performance. This paper overviews the recent achievements of the development of the WCCB TBM in Japan.  相似文献   

16.
The fusion fission fuel factory (FFFF) is a hybrid fusion fission reactor using a neutron source, which is in this case taken similar to the source of the Power Plant Conceptual Study - Water Cooled Lithium Lead (PPCS-A) design, for fissile material production instead of tritium self-sufficiency. As breeding blanket the first wall of the ITER design is attached to a molten salt zone, in which ThF4 and UF4 solute salts are transported by a LiF-BeF2 solvent salt. For this blanket design, the fissile material is assessed in quantity and quality for both the Th-U and the U-Pu fuel cycle.The transport of the initial D-T fusion neutrons and the reaction rates in this breeding blanket are simulated with the Monte Carlo code MCNP4c2. The isotopic evolution of the actinides is calculated with the burn-up code ORIGEN-S.For the Th-U cycle the bred material output remains below 10 g/h with a 232U impurity level of 30 ppm, while for the U-Pu cycle supergrade material is produced at a rate up to 100 g/h.  相似文献   

17.
Performance test of test blanket modules in the fusion environment using the International Thermonuclear Experimental Reactor (ITER) is one of the most important mile-stone for the development of the breeding blanket of the fusion power plant. In the design of test blanket modules in the ITER, it is very important to show that test modules do not cause additional safety concern to the ITER. This work has been performed for the evaluation of the preliminary safety of the test blanket module of a water cooled solid blanket, which is the primary candidate of the breeding blanket in Japan currently. Major issues of the evaluation were, establishment of post-accident cooling in the test blanket module, hydrogen gas generation by Be/steam reaction, and pressure increase and spilled water amount by the event of coolant leakage. The analyses results showed that, suppression tank system is necessary to accommodate the over-pressure by the coolant water after pipe break in the box of the test module. Coolant water pipe break of the first wall of the test blanket module will result relatively small impact to the ITER safety because of the small inventory of the coolant water of the test module and large volume of the vacuum vessel of the ITER. However, it was clarified that the water cooled blanket with beryllium pebble as the multiplier will have the potential hazard of the hydrogen formation. Further investigation to maintain the safety on this aspect is required.  相似文献   

18.
The losses of high-energy particles from the plasma depend on the toroidal field (TF) ripple in Tokomak machine. TBM (test blanket module), using RAFM (reduced activation ferritic/martensitic) steels as structure material, impacts on TF ripple in International Thermonuclear Experimental Reactor (ITER). The aim in this paper was to investigate the impact of TBM on TF ripple in ITER. It was analyzed based on ANSYS code and the Chinese DFLL (Dual Function Lithium Lead)-TBM as instances of analysis. The results indicated the TF ripple was still beyond the acceptable level of ITER (δTF < 0.3%) while considering several kinds of configurations (different masses, different dimensions, and different distances to plasma) of the DFLL-TBM. The correction coil might be one way to further reduce the effect on ripple of TF, and the ferromagnetic inserts under TF coil need to continue optimized.  相似文献   

19.
Korea has proposed and designed a helium cooled molten lithium (HCML) test blanket module (TBM) to be tested in the ITER, in which Ferrite Martensite steel (FMS) and Be were used as the structural and armor materials of the first wall (FW), respectively. In order to develop the fabrication technology for a TBM structure, joining of FMS to FMS was developed and proved through the high heat flux (HHF) test in the previous study. Then, joining of Be to FMS has been developed with several interlayers and mockups were fabricated with hot isostatic pressing (HIP) in the present study. Mockups with Be joined to the FMS were successfully fabricated with a HIP (580 °C, 100 MPa, 2 h) by trying the different interlayers (1 μm-Ti/0.5 μm-Cr/5 μm-Cu and 1 μm-Cr/5 μm-Cu). The HHF tests with a Korea Heat Load Test (KoHLT-1 facility) were performed with 1000 cycles under 0.5 MW/m2 heat flux. The test conditions were determined with ANSYS-11 and the test results were compared with the preliminary analysis ones. During the test, there was no sudden increase of temperature but UT and DT results after the test showed a delamination in the case of using Ti/Cr/Cu interlayer. But the mockup with the Cr/Cu interlayer showed a sound joining even after HHF test. Moreover, large mockups considering the TBM FW were designed and started their fabrication for developing the fabrication methods and procedure.  相似文献   

20.
In the European EUROTRANS/DEMETRA program, the synergistic effect of radiation damage and helium on microstructure and mechanical properties of two 9Cr 1Mo ferritic/martensitic (FM) steels T91 and EM10 was evaluated after irradiation in SINQ targets. In addition, the helium induced effect was investigated using helium implanted specimens. The results demonstrate that helium can induce significant embrittlement effect in FM steels as shown by the tremendous increase in ductile-to-brittle transition temperature, the great reduction in ductility and fracture toughness at >∼15 dpa and 1000 appm He and the occurrence of intergranular fracture mode. Further, high-density helium bubbles can produce pronounced hardening effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号