首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This work is focused on the assessment of the use of GPU computation in dynamic texture segmentation under the mixture of dynamic textures (MDT) model. In this generative video model, the observed texture is a time-varying process commanded by a hidden state process. The use of mixtures in this model allows simultaneously handling of different visual processes. Nowadays, the use of GPU computing is growing in high-performance applications, but the adaptation of existing algorithms in such a way as to obtain a benefit from its use is not an easy task. In this paper, we made two implementations, one in CPU and the other in GPU, of a known segmentation algorithm based on MDT. In the MDT algorithm, there is a matrix inversion process that is highly demanding in terms of computing power. We make a comparison between the gain in performance obtained by porting to GPU this matrix inversion process and the gain obtained by porting to GPU the whole MDT segmentation process. We also study real-time motion segmentation performance by separating the learning part of the algorithm from the segmentation part, leaving the learning stage as an off-line process and keeping the segmentation as an online process. The results of performance analyses allow us to decide the cases in which the full GPU implementation of the motion segmentation process is worthwhile.  相似文献   

3.
Peng  Lizhi  Zhang  Haibo  Hassan  Houcine  Chen  Yuehui  Yang  Bo 《The Journal of supercomputing》2019,75(6):2930-2949

Data gravitation-based classification model, a new physic law inspired classification model, has been demonstrated to be an effective classification model for both standard and imbalanced tasks. However, due to its large scale of gravitational computation during the feature weighting process, DGC suffers from high computational complexity, especially for large data sets. In this paper, we address the problem of speeding up gravitational computation using graphics processing unit (GPU). We design a GPU parallel algorithm namely GPU–DGC to accelerate the feature weighting process of the DGC model. Our GPU–DGC model distributes the gravitational computing process to parallel GPU threads, in order to compute gravitation simultaneously. We use 25 open classification data sets to evaluate the parallel performance of our algorithm. The relationship between the speedup ratio and the number of GPU threads is discovered and discussed based on the empirical studies. The experimental results show the effectiveness of GPU–DGC, with the maximum speedup ratio of 87 to the serial DGC. Its sensitivity to the number of GPU threads is also discovered in the empirical studies.

  相似文献   

4.
Texture can be defined as a local statistical pattern of texture primitives in observer’s domain of interest. Texture classification aims to assign texture labels to unknown textures, according to training samples and classification rules. This paper describes the usage of wavelet packet neural networks (WPNN) for texture classification problem. The proposed schema composed of a wavelet packet feature extractor and a multi-layer perceptron classifier. Entropy and energy features are integrated wavelet feature extractor. The performed experimental studies show the effectiveness of the WPNN structure. The overall success rate is about 95%.  相似文献   

5.
Gabor wavelet transform is one of the most effective texture feature extraction techniques and has resulted in many successful practical applications. However, real-time applications cannot benefit from this technique because of the high computational cost arising from the large number of small-sized convolutions which require over 10 min to process an image of 256 × 256 pixels on a dual core CPU. As the computation in Gabor filtering is parallelizable, it is possible and beneficial to accelerate the feature extraction process using GPU. Conventionally, this can be achieved simply by accelerating the 2D convolution directly, or by expediting the CPU-efficient FFT-based 2D convolution. Indeed, the latter approach, when implemented with small-sized Gabor filters, cannot fully exploit the parallel computation power of GPU due to the architecture of graphics hardware. This paper proposes a novel approach tailored for GPU acceleration of the texture feature extraction algorithm by using separable 1D Gabor filters to approximate the non-separable Gabor filter kernels. Experimental results show that the approach improves the timing performance significantly with minimal error introduced. The method is specifically designed and optimized for computing unified device architecture and is able to achieve a speed of 16 fps on modest graphics hardware for an image of 2562 pixels and a filter kernel of 322 pixels. It is potentially applicable for real-time applications in areas such as motion tracking and medical image analysis.  相似文献   

6.
Texture classification is an important problem in image analysis. In the present study, an efficient strategy for classifying texture images is introduced and examined within a distributional-statistical framework. Our approach incorporates the multivariate Wald–Wolfowitz test (WW-test), a non-parametric statistical test that measures the similarity between two different sets of multivariate data, which is utilized here for comparing texture distributions. By summarizing the texture information using standard feature extraction methodologies, the similarity measure provides a comprehensive estimate of the match between different images based on graph theory. The proposed “distributional metric” is shown to handle efficiently the texture-space dimensionality and the limited sample size drawn from a given image. The experimental results, from the application on a typical texture database, clearly demonstrate the effectiveness of our approach and its superiority over other well-established texture distribution (dis)similarity metrics. In addition, its performance is used to evaluate several approaches for texture representation. Even though the classification results are obtained on grayscale images, a direct extension to color-based ones can be straightforward.
George EconomouEmail:

Vasileios K. Pothos   received the B.Sc. degree in Physics in 2004 and the M.Sc. degree in Electronics and Information Processing in 2006, both from the University of Patras (UoP), Greece. He is currently a Ph.D. candidate in image processing at the Electronics Laboratory in the Department of Physics, UoP, Greece. His main research interests include image processing, pattern recognition and multimedia databases. Dr. Christos Theoharatos   received the B.Sc. degree in Physics in 1998, the M.Sc. degree in Electronics and Computer Science in 2001 and the Ph.D. degree in Image Processing and Multimedia Retrieval in 2006, all from the University of Patras (UoP), Greece. He has actively participated in several national research projects and is currently working as a PostDoc researcher at the Electronics Laboratory (ELLAB), Electronics and Computer Division, Department of Physics, UoP. Since the academic year 2002, he has been working as tutor at the degree of lecturer in the Department of Electrical Engineering, of the Technological Institute of Patras. His main research interests include pattern recognition, multimedia databases, image processing and computer vision, data mining and graph theory. Prof. Evangelos Zygouris   received the B.Sc. degree in Physics in 1971 and the Ph.D. degree in Digital Filters and Microprocessors in 1984, both from the University of Patras (UoP), Greece. He is currently an Associate Professor at Electronics Laboratory (ELLAB), Department of Physics, UoP, where he teaches at both undergraduate and postgraduate level. He has published papers on digital signal and image processing, digital system design, speech coding systems and real-time processing. His main research interests include digital signal and image processing, DSP system design, micro-controllers, micro-processors and DSPs using VHDL. Prof. George Economou   received the B.Sc. degree in Physics from the University of Patras (UoP), Greece in 1976, the M.Sc. degree in Microwaves and Modern Optics from University College London in 1978 and the Ph.D. degree in Fiber Optic Sensor Systems from the University of Patras in 1989. He is currently an Associate Professor at Electronics Laboratory (ELLAB), Department of Physics, UoP, where he teaches at both undergraduate and postgraduate level. He has published papers on non-linear signal and image processing, fuzzy image processing, multimedia databases, data mining and fiber optic sensors. He has also served as referee for many journals, conferences and workshops. His main research interests include signal and image processing, computer vision, pattern recognition and optical signal processing.   相似文献   

7.
Multimedia Tools and Applications - This paper proposes a simple yet effective novel classifier fusion strategy for multi-class texture classification. The resulting classification framework is...  相似文献   

8.
9.
10.
A new method using fuzzy uncertainty, which measures the uncertainty of the uniform surface in an image, is proposed for texture analysis. A grey-scale image can be transformed into a fuzzy image by the uncertainty definition. The distribution of the membership in a measured fuzzy image, denoted by the fuzzy uncertainty texture spectrum (FUTS), is used as the texture feature for texture analysis. To evaluate the performance of the proposed method. supervised texture classification and rotated texture classification are applied. Experimental results reveal high-accuracy classification rates and show that the proposed method is a good tool for texture analysis.  相似文献   

11.
We apply a new category classification method to remote sensing data. This is a supervised and non-parametric method and employs both a selforganizing neural network and a k -nearest neighbour method. One of the features of the category is represented by the neuron weights after training the neural network based on a competitive learning role. From experimental results, we can see that the proposed method obtains superior classification results compared to other methods.  相似文献   

12.
13.
The texture classification problem is projected as a constraint satisfaction problem. The focus is on the use of a probabilistic neural network (PNN) for representing the distribution of feature vectors of each texture class in order to generate a feature-label interaction constraint. This distribution of features for each class is assumed as a Gaussian mixture model. The feature-label interactions and a set of label-label interactions are represented on a constraint satisfaction neural network. A stochastic relaxation strategy is used to obtain an optimal classification of textures in an image. The advantage of this approach is that all classes in an image are determined simultaneously, similar to human perception of textures in an image.  相似文献   

14.
In this paper, we present a texture classification procedure that makes use of a blind deconvolution approach. Specifically, the texture is modeled as the output of a linear system driven by a binary excitation. We show that features computed from one-dimensional slices extracted from the two-dimensional autocorrelation function (ACF) of the binary excitation allows representing the texture for rotation-invariant classification purposes. The two-dimensional classification problem is thus reconduced to a more simple one-dimensional one, which leads to a significant reduction of the classification procedure computational complexity.  相似文献   

15.
Object and texture classification using higher order statistics   总被引:5,自引:0,他引:5  
The problem of the detection and classification of deterministic objects and random textures in a noisy scene is discussed. An energy detector is developed in the cumulant domain by exploiting the noise insensitivity of higher order statistics. An efficient implementation of this detector is described, using matched filtering. Its performance is analyzed using asymptotic distributions in a binary hypothesis-testing framework. The object and texture discriminant functions are minimum distance classifiers in the cumulant domain and can be efficiently implemented using a bank of matched filters. They are immune to additive Gaussian noise and insensitive to object shifts. Important extensions, which can handle object rotation and scaling, are also discussed. An alternative texture classifier is derived from a ML viewpoint and is statistically efficient at the expense of complexity. The application of these algorithms to the texture-modeling problem is indicated, and consistent parameter estimates are obtained  相似文献   

16.
A multi-scale supervised neural architecture, called Multi-Scale SOON, is proposed for natural texture classification. This architecture recognizes the input textured image through a hierarchical categorization structure in multiple scales. This process consists of three sequential phases: a multi-scale feature extraction, a scale prototype pattern generation, and a multi-scale prototype fusion pattern classification. First phase extracts scale textural features using the Gabor filtering. Then, a hierarchical categorization shapes the classification. First categorization level generates the scale prototypes and an upper level categorizes the prototypes fusion. Three increasing complexity tests over the well-known Brodatz database are performed in order to quantify the Multi-Scale SOON behavior. The comparison to other standout methods proves Multi-Scale SOON behavior to be satisfactory. The tests, including the entire texture album, show the stability and robustness of the Multi-Scale SOON response.  相似文献   

17.
ABSTRACT

A new architecture of deep neural networks, directed acyclic graph convolutional neural networks (DAG-CNNs), is used to classify heartbeats from electrocardiogram (ECG) signals into different subject-based classes. DAG-CNNs not only fuse the feature extraction and classification stages of the ECG classification into a single automated learning procedure, but also utilized multi-scale features and perform score-level fusion of multiple classifiers automatically. Therefore, DAG-CNN negates the necessity to extract hand-crafted features. In most of the current approaches, only the high level features which extracted by the last layer of CNN are used. Instead of performing feature level fusion manually and feeding the results into a classifier, the proposed multi-scale system can automatically learn different level of features, combine them and predict the output label. The results over the MIT-BIH arrhythmia benchmarks database demonstrate that the proposed system achieves a superior classification performance compared to most of the state-of-the-art methods.  相似文献   

18.
19.
Catadioptric omnidirectional view sensors have found increasing adoption in various robotic and surveillance applications due to their 360° field of view. However, the inherent distortion caused by the sensors prevents their direct utilisations using existing image processing techniques developed for perspective images. Therefore, a correction processing known as “unwrapping” is commonly performed. However, the unwrapping process incurs additional computational loads on central processing units. In this paper, a method to reduce this burden in the computation is investigated by exploiting the parallelism of graphical processing units (GPUs) based on the Compute Unified Device Architecture (CUDA). More specifically, we first introduce a general approach of parallelisation to the said process. Then, a series of adaptations to the CUDA platform is proposed to enable an optimised usage of the hardware platform. Finally, the performances of the unwrapping function were evaluated on a high-end and low-end GPU to demonstrate the effectiveness of the parallelisation approach.  相似文献   

20.
The increasing integration of technology in the different areas of science and industry has resulted in the design of applications that generate large amounts of data on-line. Most often, extracting information from these data is key, in order to gain a better understanding of the processes that the data are describing. Learning from these data poses new challenges to traditional machine learning techniques, which are not typically designed to deal with data in which concepts and noise levels may vary over time. The purpose of this paper is to present supervised neural constructivist system (SNCS), an accuracy-based neural-constructivist learning classifier system that makes use of multilayer perceptrons to learn from data streams with a fast reaction capacity to concept changes. The behavior of SNCS on data stream problems with different characteristics is carefully analyzed and compared with other state-of-the-art techniques in the field. This comparison is also extended to a large collection of real-world problems. The results obtained show that SNCS can function in a variety of problem situations producing accurate classification of data, whether the data are static or in dynamic streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号