首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
《石油机械》2017,(6):8-12
页岩气井压裂压力高、排量大、时间长,力-热耦合作用明显,力-热耦合作用下套管瞬态应力变化研究较少。基于页岩气水平井压裂工程实际,利用热流固耦合数值算法,对压裂过程中套管温度瞬态变化及力-热耦合作用下套管应力瞬态变化进行计算。计算结果表明:压裂过程中,套管温度迅速降低至近恒值温度T_(min),压裂结束后缓慢回升;温度瞬态变化与排量存在显著关系,排量越大,T_(min)越低;力-热耦合作用下,套管瞬态最大应力先升高后降低,最高值出现在压裂初期;套管瞬态应力变化与排量存在显著关系,排量越大,最大应力值越高,套损风险越大。研究结果可为页岩气水平井压裂过程中套损问题影响因素分析提供参考和借鉴。  相似文献   

2.
页岩气井工程实践表明,套管压裂易导致水泥环完整性发生破坏出现环空带压。基于套管压裂工程实际,建立井筒温度场模型和套管-水泥环-地层组合体有限元模型,采用解析法和数值法结合方式,计算页岩气井压裂过程中瞬态力-热耦合对水泥环应力大小、分布影响规律。结果表明:压裂过程中水泥环内外壁温差先增大后减小,压裂初近内壁处存在陡峭温度梯度,易导致内壁应力显著提高;瞬态力-热耦合作用导致水泥环内壁应力大幅提升,加剧了水泥环完整性失效的风险,压裂初期为水泥环易发生损坏的“风险段”;水泥环内壁最大应力随着时间变化,易产生“多裂纹”形态,加剧环空带压。研究结果可为页岩气井压裂过程中水泥环完整性设计控制提供参考。  相似文献   

3.
在页岩气水平井多级分段压裂施工中,由于压裂段固井质量较差,当井筒温度和压力急剧变化时,套管失效风险会大大增加。在现场完井和压裂施工数据基础之上,综合考虑压裂压力和井底温度变化,建立了不同水泥环形态的套管-水泥-地层组合体模型,研究压裂过程中水泥环缺失、压裂压力和温度变化对套管应力的影响。计算结果表明:压裂施工中,当以大排量向井筒内泵入压裂液时,井底温度显著降低;如果施工压力较大、水泥环出现窜槽缺失,则套管会产生应力集中,这将急剧增加套管应力,大大增加套管失效风险。固井质量对井筒完整性至关重要,同时必须将压裂液温度、排量和施工压力控制在合理范围,从而保证压裂过程中套管的安全。  相似文献   

4.
固井施工以下套管和注水泥来建立油气安全生产通道,该安全通道由套管、水泥环和地层构成,而不同地层和水泥环环境会改变套管应力分布,影响油气安全生产。本文基于直井的地层-水泥环-套管耦合平面弹性应变模型,并借助ABAQUS有限元软件,分析了水泥环弹性模量以及水泥环缺失(包括周向缺失与径向缺失)对套管应力分布的影响,以期得到水泥环弹性模量及水泥环缺失对套管应力分布的影响规律。由于井下实际情况复杂,全实物模拟套管在井眼中所处的状况实属不易,本文借助有限元软件ABAQUS对井下套管应力分布进行了较为全面的模拟和分析。分析结果对固井后套管应力分布优化具有一定的参考价值。  相似文献   

5.
高温高压气井自由套管对水泥环应力和完整性的影响   总被引:1,自引:0,他引:1  
水泥环的密封完整性对降低环空带压、提高井筒安全性、延长气井开采寿命至关重要。为防止环空气窜,高温高压气井油层套管水泥一般返至井口,这给深井固井带来了巨大挑战。考虑井身结构和作业载荷的复杂性,运用Ansys软件建立了存在自由套管时水泥环受力有限元模型,研究了自由套管长度和井口套压对水泥环应力的影响,结果表明,井口套压作用下自由套管的鼓胀效应在水泥环中产生的径向拉应力和轴向应力是水泥环密封失效的主要原因。自由套管段长度对水泥环受力很不敏感,油层套管水泥可考虑不返至井口,但为保持水泥环长期完整性应避免过高井口套压,同时优选水泥浆体系以提高套管与水泥环胶结强度。  相似文献   

6.
蠕变地层套管应力计算是采取套损预防措施的依据,目前采用非均匀地应力作为套管水泥环力学模型边界条件的套管应力计算方法与实际情况不符。提出了蠕变地层套管应力计算应将均匀地应力作为其边界条件的有限元力学模型,并分析了水泥环椭圆度和弹性模量对套管应力的影响:当水泥环弹性模量小于等于地层弹性模量时,套管最大应力出现在最小水平地应力方向,反之则出现在最大水平地应力方向;套管峰值应力随着水泥环椭圆度的增大而增加,套管由缩颈损坏转变为挤扁损坏;蠕变地层水泥环弹性模量与地层弹性模量和井眼椭圆度之间存在合理的匹配关系,改变水泥环弹性模量是降低蠕变地层套管应力的最有效方法。该规律的得出有助于加深套损机理的认识和套损预防措施的实施。()  相似文献   

7.
张智  王嘉伟  吴优  霍宏博  谢涛  李金蔓 《石油学报》2022,43(8):1158-1172
大位移页岩气井的井眼轨迹复杂,且压裂开发过程中经常出现由于水泥环缺陷引发的套变损伤问题。针对页岩气井压裂过程中高泵压大排量的特点,采用有限元分析方法,通过优化模型网格划分,建立了适用于页岩气井复杂井眼轨迹下套管力学完整性计算的套管-水泥环-地层组合体模型,讨论了水泥环缺失角度、缺失厚度、缺失长度及复合缺陷对造斜段及水平段局部屈曲部分套管力学完整性的影响。结果表明,套管的周向应力随水泥环弹性模量的增大而减小,受泊松比影响较小。水泥环角度缺失会使套管出现应力集中现象,当缺失角度超过90°,应力集中现象得到减缓。随着水泥环缺失厚度的增加,套管所受应力增大。无论是造斜段还是水平段,不同缺失角度下,水泥环厚度、套管尺寸及泵压对套管应力的影响类似,趋势均为随着缺失角度的增加,套管应力先增大后减小。水泥环缺失的临界部位会产生应力突变,该位置也是最容易发生套损的部位。同一缺失厚度下,套管应力最大值随着缺失角度的增加而先增加后减小;同一缺失角度下,套管应力最大值随着缺失厚度的增加而增加。随着缺失角度的增加,水泥环缺失部位对应套管沿管长方向的等效应力先增加后减小。水泥环越厚,套管等效应力越小。在相同厚度下,水泥环剩余厚度越薄,套管等效应力越大,全部缺失时应力水平最大。  相似文献   

8.
连续变化内压下套管-水泥环-围岩组合体微环隙计算   总被引:22,自引:0,他引:22  
固井后井筒内压力的变化可能导致水泥环破坏或使水泥环产生塑性变形,从而在第一界面或第二界面处产生微环隙。基于Mohr-Coulomb准则,建立了套管-水泥环-围岩组合体弹塑性分析模型,对套管内压力加载和卸载过程进行分析,以界面拉力大小判定是否产生微环隙,并给出了微环隙大小的计算公式。使用该模型对前人的气窜实验进行模拟,理论结果与实验结果相符。分析结果表明,微环隙的产生由加载和卸载过程共同决定。加载过程可能会使水泥环进入塑性,而卸载时内压降低将导致界面受拉,从而产生微环隙。第一界面、第二界面均可能产生微环隙,取决于界面胶结强度与界面拉力的关系。卸载时,第一界面拉力大于第二界面拉力,当两个界面胶结强度接近时,第一界面更容易产生微环隙。该模型可用于评价水力压裂等过程中水泥环密封失效的风险,为现场施工提供依据,从而降低井筒密封完整性失效的风险。  相似文献   

9.
套管-水泥环-地层系统应力分布规律研究   总被引:4,自引:2,他引:2  
在推导非均匀地应力下套管抗挤强度的解析解时,国内外许多学者采用将其分解为均匀地应力和偏差地应力两个子问题求解的方法,使问题复杂化;又因为在推导套管载荷的解析解过程中省略了小量值,还影响到求解的精度。为此,以弹性力学为基础,推导出了计算套管-水泥环-地层系统应力的线性方程组,并利用matlab7.0编制了相应的计算机程序求解。该方法推导过程简单、求解精度高,所得结果与有限元结果相比,相对误差小于0.3%。实例分析结果表明:在非均匀地应力下套管径向压力的最大值方向指向原地应力场中最小主应力,而水泥环径向压力的最大值方向指向原地应力场中最大主应力。  相似文献   

10.
目前深层页岩气井常用的旋转导向工具服役环境温度为135 ℃,准确预测深层页岩气水平井钻进中循环温度对延长井下测量工具使用寿命与有效延伸水平段长度非常重要。基于能量守恒原理,考虑井筒-地层各控制区域——钻柱内流体、钻柱壁、环空流体及近井壁地层在径向与轴向传热机理,建立了井筒-地层瞬态传热模型,应用全隐式有限差分法对数学模型求解,分析了各敏感因素对井筒温度的影响。研究表明:页岩气水平井流体循环初期环空流体温度高于原始地层温度;增加循环时间、流体比热容与密度、降低入口温度可以降低井底温度;排量过高引起摩阻生热,使得井筒温度非降反升;通过地面降温装置降低入口温度能抵消水平段延伸产生的热量,增加水平段钻进距离;结合Y101H26-1井数据,当入口温度为35、65 ℃,对应钻进井深分别为5 650、5 250 m时,不超过旋转导向工具服役环境温度,计算误差在3%以内。该研究成果可避免井筒降温技术应用的盲目性和低效性。  相似文献   

11.
水泥环对套管射孔后抗挤毁强度的影响   总被引:3,自引:1,他引:2  
何育荣 《石油机械》2005,33(1):15-17
建立了未射孔套管、不带水泥环射孔套管、外裹水泥环套管的有限元分析模型,对这3种情况下套管的抗挤毁强度进行了对比分析。得出如下重要结论(1)射孔使套管抗挤毁强度显著降低,降低幅度为29%;(2)固结良好的水泥环对于加强射孔套管强度有明显作用,使射孔套管的抗挤毁强度提高188%;(3)水泥环不能抵消射孔对套管抗挤毁强度的伤害,外裹固结良好水泥环的套管,射孔后其抗挤毁强度与无孔套管相比下降156%。  相似文献   

12.
水泥环对套管载荷影响的理论研究   总被引:4,自引:0,他引:4  
陈朝伟  殷有泉 《石油学报》2007,28(3):141-144
用解析方法对非均匀地应力情况下水泥环对套管载荷影响的研究表明,水泥环对套管载荷的影响取决于水泥环厚径比、水泥环与地层材料的差异系数以及地层与套管的刚度比这3个因素,其中刚度比起着重要作用.当刚度比λ≥1-2ν(ν为水泥环泊松比)时,用较高弹性模量的水泥固井可以降低套管载荷;当刚度比λ<1-2ν时,用较低弹性模量的水泥固井可以降低套管载荷.一般情况下,增加水泥环的厚度可以降低套管载荷.水泥环与套管光滑接触情况下,套管载荷非均匀程度降低,基本上呈均布载荷.  相似文献   

13.
套管磨损与水泥环缺陷位置对套管应力的影响   总被引:1,自引:0,他引:1  
以APDL为开发工具建立有限元模型,系统研究了非均匀地应力场中套管内壁磨损位置与水泥环缺陷位置对套管应力的影响规律。以塔里木油田迪娜2井5000m井深处为实例进行分析,结果表明,在一定磨损程度下,套管内最大等效应力总是在最大地应力方位取得最小值,在最小地应力方位取得最大值,工程中假设磨损位置在最小地应力方位是偏于安全的;水泥环缺陷明显改变了套管应力的分布规律,当套管磨损位置与水泥环缺陷位置角度相等时,套管内的应力最大,为最危险工况。  相似文献   

14.
地层和水泥环弹性模量对套管强度的影响分析   总被引:1,自引:2,他引:1  
以地层-水泥环-套管组合系统为研究对象,根据弹性力学理论,推导了热应力和非均匀地应力作用下套管壁上的三轴应力计算公式,并研究了热采井和常规非热采井中不同地层、水泥环弹性模量对套管强度的影响规律。研究结果表明,随着水泥环弹性模量的增加,套管内壁Mises应力先急剧增加,后呈缓慢下降趋势;在套管Mises应力达到最大值之前,降低水泥环的弹性模量,可以对套管起到明显的保护作用,这一点对于热采井注汽期间的套管保护效果更加显著;地层弹性模量越大,常规井中套管内壁的Mises应力值越小,而热采井注汽过程中套管内壁的Mi-ses应力值则越大。  相似文献   

15.
在建立水泥环-套管射孔数学模型和有限元分析模型后,计算分析了射孔对水泥环-套管性能的影响,得出如下结论:(1)射孔是造成套管损坏的主要原因,无水泥环固结,完好套管产生的应力是射孔套管的13;(2)射孔套管壁厚和水泥环固结状态对射孔套管性能影响较大,壁厚12.395mm射孔套管是壁厚7.720mm射孔套管抗挤强度的1.5倍以上,水泥环与套管固结良好且上下固定,可以提高套管抗挤强度;(3)生产中保持内压和外载相近,可以明显减小射孔套管应力;(4)增大水泥环弹性模量,保持水泥环弹性模量在30~35GPa之间,可以提高射孔水泥环-套管抗挤强度。  相似文献   

16.
工作液密度降低对水泥环界面胶结的影响   总被引:1,自引:0,他引:1  
固井后工作液密度的降低会造成水泥环与套管和地层脱离胶结,从而形成微环隙,导致水泥环的层间封隔失效。根据厚壁圆筒理论,建立了更符合水泥环受力状况的套管-水泥环-地层力学模型,给出了工作液密度降低对水泥环与套管及地层间所受到的应力位移计算式。模拟计算结果表明,在相同井深处,工作液密度降低值越大,水泥环受到的应力值越大,界面处越容易产生微环隙。对于相同密度降低值,水泥环受到的应力值和产生微环隙的可能性随井深的减小而减小。结合模拟计算值和试验,测试不同水泥浆体系的水泥石与模拟套管的胶结强度值,选择和设计不同的水泥浆体系或降低合理的工作液密度值以防止微环隙产生的新途径。  相似文献   

17.
胶乳对水泥石三轴力学形变能力的作用   总被引:2,自引:0,他引:2  
针对套管、水泥环、地层三者间形变不协调而引起油气井生产后期层间封隔失效的问题,采用美国GCTS公司三轴岩石力学测试系统RTR-100,准确地测定了在三轴应力直接加载及三轴应力多周循环两种加载方式下水泥石的力学形变能力。实验结果表明,水泥浆中添加一定量的SBR胶乳,在降低油井水泥石抗压强度的同时增大了油井水泥石在低应力作用下的弹性形变和在高应力下的塑性形变,提高水泥石抗冲击破坏的能力。  相似文献   

18.
油井开发层段射孔对套管力学性能影响较大,油井开采中后期射孔套管损坏严重。建立水泥环—套管射孔模型并应用Ansys有限元软件计算分析射孔套管应力变化和套管性能,分析得出,射孔是造成套管损坏的主要原因。射孔水泥环套管最大应力在射孔孔眼产生,沿孔径方向应力减小。水泥环对射孔套管的抗挤强度影响明显,可以有效减小套管产生的应力。均匀载荷下射孔套管的应力随外压的增加而增加,不同类型的套管应力变化较大。射孔套管的应力随着孔径的增加而明显增加。非均匀载荷对射孔套管影响较均匀载荷明显,套管的抗挤强度较均匀外压时明显减小。在非均匀外压较大时,应采用P110套管,以提高射孔套管的抗挤强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号