首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The partial oxidation of methanol to formaldehyde was studied over YBa2Cu3O7-x catalyst in a flow reactor. The structural change of YBa2Cu3O7-x before and after the reaction was measured by means of XRD and iodometric titration method. The catalytic characteristics of YBa2Cu3O7-x for the partial oxidation of methanol to formaldehyde was due to copper ions. It was found that Cu+2 was responsible for the higher selectivity for formaldehyde.  相似文献   

2.
The superconducting Y1Ba2Cu3O7-x (123) and the Y2Ba1Cu1O5(211) powders in this study were prepared by pyrophoric synthesis method with Y2O3 (99.9 %), BaCO3 (99.9 %), and CuO (99.9 %) powders. Samples of 123 and 211 pellets were first prepared and then piled to have a 123/211/123 arrangement before a partial melting process was applied for phase change of the center piece (211) to 123 phase through a peritectic reaction. The process parameters were a melting temperature of 1,040–1,070 °C and the mass of the 123 piece ranging from 0.4 to 1.2 g. The superconductivity, such as critical temperature (Tc), and mass susceptibility(χ) of bulk 123 and 211 samples were measured by AC four point probe method and AC susceptometer, respectively. The experimental results can be summarized as follows: the best preparation condition in the range examined was a melting temperature of 1,060 °C and mass ratio [123(A)/211(B)] of 2:1 with melting time of 30 minutes to yield the Tc of 88.5 K.  相似文献   

3.
The catalytic oxidation of methane was studied between 840 and 1110 K on a YBa2Cu3O* mixed-conducting electrode deposited on an yttria stabilized zirconia solid electrolyte. The lattice oxygen supplied electrochermically to the catalyst surface actively participated in the oxidation reaction, with CO as the major product, and CO2, CH3OH and HCHO as the minor products. The reaction rate was found to be of first order with respect to methane. The rate constant depended strongly on the electrochemically imposed bias. Under DC bias condition, the reaction rate was enhanced by as much as two orders of magnitude over that observed under open-circuit conditions. An Eley-Rideal mechanism for the interaction of CH4 with surface oxygen is proposed as the rate-determining step.  相似文献   

4.
The mixed copper–silver oxide, Cu2Ag2O3, has been prepared by co-precipitation and tested for ambient temperature carbon monoxide oxidation. The catalyst demonstrated appreciable low temperature oxidation activity and the catalyst aged for 4 h was the most active. Carbon monoxide conversion increased with time-on-stream, reaching steady state after ca. 1000 min. Acomparison of the catalytic activity has been made with a representative sample of a high activity hopcalite, mixed copper/manganese oxide catalyst. On the basis of CO oxidation rate data corrected for the effect of catalyst surface area the Cu2Ag2O3, aged for 4 h was at least as active as the hopcalite.  相似文献   

5.
The effects of MgO promoter on the physicochemical properties and catalytic performance of Ni/Al2O3 catalysts for the partial oxidation of methane to syngas were studied by means of BET, XRD, H2-TPR, TEM and performance evaluation. It was found that the MgO promoter benefited from the uniformity of nickel species in the catalysts, inhibited the formation of NiAl2O4 spinel and improved the interaction between nickel species and support. These results were related to the formation of NiO-MgO solid solution and MgAl2O4 spinel. Moreover, for the catalysts with a proper amount of MgO promoter, the nickel dispersiveness was enhanced, therefore making their catalytic performance in methane partial oxidation improved. However, the excessive MgO promoter exerted a negative effect on the catalytic performance. Meanwhile, the basicity of MgO promoted the reversed water-gas shift reaction, which led to an increase in CO selectivity and a decrease in H2 selectivity. The suitable content of MgO promoter in Ni/Al2O3 catalyst was ∼7 wt-%. Translated from Journal of Fuel Chemistry and Technology, 2006, 34(4): 450–455 [译自: 燃料化学学报]  相似文献   

6.
The effect of gas phase O2 and reversibly adsorbed oxygen on the decomposition of CH4 and the surface state of a Ni/Al2O3 catalyst during partial oxidation of CH4 were studied using the transient response technique at atmospheric pressure and 700°C. The results show that, when the catalyst surface is completely oxidized under experimental conditions, only a small amount of CO and H2 can be produced from non‐selective oxidation of CH4 by reversibly adsorbed oxygen which is more active in oxidizing CH4 completely than NiO via the Rideal–Eley mechanism and both the conversions of CH4 and O2 and the selectivities to CO and H2 are very low. Therefore, keeping the catalyst surface in the reduced state is the precondition of high conversion of CH4 and high selectivities to CO and H2. The surface state of the catalyst decides the reaction mechanism and plays a very important role in the conversions and selectivities of partial oxidation of CH4. During partial oxidation of CH4, no oxygen species but a small amount of carbon exists on the catalyst surface, which is favorable for maintaining the catalyst in the reduced state and the selectivity of CO. The results also indicate that direct oxidation is the main route for partial oxidation of CH4, and the indirect oxidation mechanism is not able to gain dominance in the reaction under the experimental conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Cu2V2O7/Cu3V2O8/g-C3N4 heterojunctions (CVCs) were prepared successfully by the reheating synthesis method. The thermal etching process increased the specific surface area. The formation of heterojunctions enhanced the visible light absorption and improved the separation efficiency of photoinduced charge carriers. Therefore, CVCs exhibited superior adsorption capacity and photocatalytic performance in comparison with pristine g-C3N4 (CN). CVC-2 (containing 2 wt% of Cu2V2O7/Cu3V2O8) possessed the best synergistic removal efficiency for removal of dyes and antibiotics, in which 96.2% of methylene blue (MB), 97.3% of rhodamine B (RhB), 83.0% of ciprofloxacin (CIP), 86.0% of tetracycline (TC) and 80.5% of oxytetracycline (OTC) were eliminated by the adsorption and photocatalysis synergistic effect under visible light irradiation. The pseudo first order rate constants of MB and RhB photocatalytic degradation on CVC-2 were 3 times and 10 times that of pristine CN. For photocatalytic degradation of CIP, TC and OTC, it was 3.6, 1.8 and 6.1 times that of CN. DRS, XPS VB and ESR results suggested that CVCs had the characteristics of a Z-scheme photocatalytic system. This study provides a reliable reference for the treatment of real wastewater by the adsorption and photocatalysis synergistic process.  相似文献   

8.
The measurements of MS-TPD, TPRS, the electrical conductivity and kinetics on Ba2YCu3O7-8 show that the catalytic activity of CO oxidation is closely related to properties such as the amounts and sites of oxygen, and electrical conductivity. Based on the experimental results a reaction mechanism has been suggested.  相似文献   

9.
Perovskite oxide structured YBa2Cu3O7-x(YBCO) has been first prepared by carbonate precipitation and then modified with palladium or ruthenium by impregnation on the perovskite oxide, while cobalt was co-precipitated simultaneously in the same pH range with perovskite oxide. After characterization the catalysts were used in the temperature range 300–450°C, in the pressure range 1–9 atmospheres and for H2/CO ratios in the range 1–4 in a differential plug flow reactor for the hydrogenation of carbon monoxide to give hydrocarbons. The perovskite oxide (YBCO) 20% (w/w) and doped 2% (w/w) cobalt oxide catalyst were prepared by the wet chemical method from their nitrate solutions and oxidized at 950°C. Perovskite oxide (Dursun, G. & Winterbottom, J. M., J. Chem. Technol Biotechnol. 63 (1995) 113–16) was also doped with palladium and ruthenium metal by impregnation followed by oxidation at 250°C. The catalysts prepared were characterized by using TemperatureProgrammed Reduction (TPR) to observe the reduction temperature and also to measure total and metal surface area. The modified perovskite oxide on alumina, ruthenium- and cobalt-doped catalysts, has been shown to give a better conversion and also selectivity towards saturated hydrocarbons compared with palladium-doped catalyst. The temperature effect of these catalysts is more consistent, giving a steady increase of conversion with increasing temperature. Although increase of pressure increases the conversion, it causes very little change in product distribution. The activation energy of palladium- and ruthenium-doped, and cobalt co-precipitated catalysts for the reaction has been measured to be 55 kJ mol−1, 75 kJ mol−1 and 50 kJ mol−1 respectively. A general rate equation of the form r=k[H2]m[CO]n has been observed and found to be applicable at the pressures and temperatures used for the catalytic system studied and found to be m≌1·0 for palladium-doped, m≌1·2 for ruthenium-doped and m≌0·95 for cobalt co-precipitated catalysts as n becomes zero or negligibly less than zero. The mechanism of reaction to produce hydrocarbons from syngas has been deduced from the results. It appeared that the carbon monoxide insertion mechanism has been more evident for palladium-doped catalysts whereas the carbide mechanism plays the main role for the ruthenium-doped and cobalt co-precipitated catalysts. © 1998 Society of Chemical Industry  相似文献   

10.
A series of SnO2-supported MoO3 catalysts were prepared by the metal oxide vapor synthesis (MOVS) technique. ESR studies indicated the presence of highly dispersed Mo5+ species in both octahedral and tetrahedral coordination environments at all the loadings studied. At the highest MoO3 loading of 12 wt%, the formation of MoO3 microcrystallites was indicated from the lower intensity of the ESR signal. Raman studies also showed the presence of well dispersed surface molybdate species up to 4.4 wt% MoO3 loading, and the peaks corresponding to microcrystallites of molybdena were observed at 12 wt% MoO3 loading. The ethanol partial oxidation activities of the catalysts increased with increase in MoO3 loading and the catalyst with 4.4 wt% molybdena content showed the highest activity; all the MOVS catalysts showed 100% selectivity to acetaldehyde at low conversions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Novel catalysts, SnxZr1-xO2 solid solutions, for NO selective catalytic reduction:NO SCR) are reported. They have much higher activity and selectivity than SnO2 and ZrO2. Sn4+ is the main reductive sites as proved by TPR. The dilution of Sn sites by the coexisting Zr causes a suppression of propene combustion and consequently promoted the selective reduction of NO. The rutile structure might be beneficial to NO SCR.  相似文献   

12.
Selective partial oxidation of ethane to ethanol and acetaldehyde by in situ generated H2O2 has been achieved under cathodic current passing through a carbon supported Nafion-H catalytic membrane. A correlation between H2O2 generation rate and reaction rate has been found.  相似文献   

13.
Catalytic properties of Cr2O3 supported on MgF2 or Al2O3 have been modified by magnesium oxide. The catalysts have been obtained by the co-impregnation method and characterised by: BET, XRD and TPR. As follows from the results, the oxides supported on magnesium fluorine react with each other already at 400 °C, leading to formation of an amorphous spinel-like phase. On the Al2O3 support such an MgCr2O4 spinel has appeared at much higher temperatures. The addition of magnesium oxide has a significant effect on the activity and selectivity of the catalysts studied in the CO oxidation reaction at room temperature and in the reaction of cyclohexane dehydrogenation. The magnesium–chromium catalysts supported on MgF2 have been found to show much higher activity and selectivity than the analogous systems supported on Al2O3.  相似文献   

14.
Precipitated silica catalysts loaded with either MoO3 (0.2–4.0 wt%) or V2O5 (0.2–5.3 wt%) have been studied in the selective partial oxidation of methane to formaldehyde with molecular oxygen at 520 °C. The functionality of the SiO2 surface towards the formation of HCHO is significantly promoted by V2O5, while it is depressed by the MoO3.  相似文献   

15.
Catalytic partial oxidation of methane (CPOM) to syngas has been investigated in a fixed-bed reactor with an O2-distributor (FR-OD). The axial temperature profile and species profile along the Ni or Rh-based catalyst bed have been measured at different conditions. As the O2 was distributed radially into the catalyst bed through several rows of holes arranged at the special zone of the OD, a microenvironment maintaining a low O2/CH4 ratio (0.10–0.22) was provided in the catalyst bed. The hotspot phenomena appeared at the entrance of the catalyst bed have been effectively controlled. A more uniform temperature profile along the catalyst bed has been given, which is beneficial to the stability of catalyst and the safety of reactor operation.  相似文献   

16.
The superconductivity of the ceramic solid YBa2Cu3O7 ? δ, prepared by heating Y2O3, BaCO3 and CuO at 920°C for 22 h, was checked by the Meissner effect. Chemical analysis established the formula of the compound prepared. A thermostated aqueous suspension of the superconductor, treated with a solution of H2O2, produced oxygen, whose volume was measured at intervals in a gas burette. From the initial rates of the first-order reaction at different temperatures, the activation enthalpy and entropy were 16 kJ mol?1 and ?210 J K?1 mol?1 respectively. The rates of gas evolution were similar to those obtained when a MnO2 sample was used as a catalyst. Neither the superconductor nor its semiconductor phase photocatalysed the decomposition of KMnO4 solution. Evidence of the catalysed decomposition of N2H+5 by the superconductor is presented.  相似文献   

17.
The electrical conductivity of titanium and zirconium pyrophosphates used as catalysts in n-butane oxidative dehydrogenation has been measured under oxygen and n-butane at 400 and 500 °C and under subsequent exposures to both gases at the catalytic reaction temperature. The two compounds appeared to be p-type semiconductors under air with positive holes as the main charge carriers but became n-type when contacted with n-butane. If their conductivities are comparable as p-type semiconductors (within one order of magnitude), by contrast, they differ by 3 orders of magnitude when being n-type semiconductors. These results explain the difference in catalytic reaction mechanism encountered on the two solids. The alkane activation was proposed to be related in both cases to the p-type semiconducting properties of the solids, likely through hydrogen abstraction by a surface O- species, forming a C4H9 radical which will similarly undergo a second hydrogen abstraction to form butenes. The changes in activation energy and in selectivity on TiP2O7 at higher temperatures (>450 C) are indicative of a change in mechanism, possibly with the transient formation of an alkoxide species.  相似文献   

18.
Effect of additives, Ce and Mn, on the catalytic performance of Sn/Al2O3 catalyst prepared by sol–gel method for the selective reduction of NOx with propene under lean conditions was studied. Sn–Ce/Al2O3 catalysts exhibited higher activity than Sn/Al2O3 catalyst and the optimum Ce loading is 0.5–1%. The promoting effect of Ce is to enhance the oxidation of NO to NO2 and facilitate the activation of propene, both of which are important steps for the NOx reduction. The presence of oxygen contributes to the oxidation of NO and shows a promoting effect.  相似文献   

19.
The partial oxidation of CH3OH to CO2 and H2 over a Cu/ZnO/Al2O3 catalyst has been studied by temperature-programmed oxidation (TPO) using N2O and O2 as the oxidant. Post-reaction analysis of the adsorbate composition of the surface of the catalyst was determined by temperature-programmed desorption (TPD). The temperature dependence of the composition of the mixture of products formed by TPO was shown to depend critically on the partial pressure of the oxidant, with the highest partial pressure of oxygen used (10% O2 in He, 101 kPa—the CH3OH partial pressure was 17% throughout), producing marked non-Arrhenius fluctuations on temperature programming. Unsurprisingly, therefore, the adsorbate composition of the catalyst revealed by post-reaction TPD was also found to be determined by the partial pressure of the oxidant. Using high partial pressures of oxidant (5% and 10% O2 in He, 101 kPa), the only adsorbate detected was the bidentate formate species adsorbed on Cu. Lowering the oxygen partial pressure to 2% in He (101 kPa) revealed a catalyst surface on which the bidentate formate on Cu was the dominant intermediate with the formate on Al2O3 also being present. A further lowering of the partial pressure of the oxidant, obtained by using N2O as the oxidant (2% N2O in He, 101 kPa), resulted in a surface on which the formate adsorbed on ZnO was the dominant adsorbate with only a small coverage of the Cu by the bidentate formate.  相似文献   

20.
The effects of thermal aging and H2O treatment on the physicochemical properties of BaO/Al2O3 (the NOx storage component in the lean NOx trap systems) were investigated by means of X-ray diffraction (XRD), BET, TEM/EDX and NO2 TPD. Thermal aging at 1000 °C for 10 h converted dispersed BaO/BaCO3 on Al2O3 into low surface area crystalline BaAl2O4. TEM/EDX and XRD analysis showed that H2O treatment at room temperature facilitated a dissolution/reprecipitation process, resulting in the formation of a highly crystalline BaCO3 phase segregated from the Al2O3 support. Crystalline BaCO3 was formed from conversion of both BaAl2O4 and a dispersed BaO/BaCO3 phase, initially present on the Al2O3 support material after calcinations at 1000 and 500 °C, respectively. Such a phase change proceeded rapidly for dispersed BaO/BaCO3/Al2O3 samples calcined at relatively low temperatures with large BaCO3 crystallites observed in XRD within 10 min after contacting the sample with water. Significantly, we also find that the change in barium phase occurs even at room temperature in an ambient atmosphere by contact of the sample with moisture in the air, although the rate is relatively slow. These phenomena imply that special care to prevent the water contact must be taken during catalyst synthesis/storage, and during realistic operation of Pt/BaO/Al2O3 NOx trap catalysts since both processes involve potential exposure of the material to CO2 and liquid and/or vapor H2O. Based on the results, a model that describes the behavior of Ba-containing species upon thermal aging and H2O treatment is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号