首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fetal trophoblast cells invade endometrial blood vessels and gain access to maternal blood within two days after the onset of blastocyst implantation in macaques. Soon thereafter, cytotrophoblast cells migrate well into the lumina of arteries and subsequently invade arterial walls. Using electron microscopy and light microscopy we investigated the interactions between invasive cytotrophoblast cells and the cellular and extracellular components in the walls of endometrial arteries. The placentas and adjacent endometrium of 22 macaques (GD 17 to term) were examined. Spiral arteries containing migratory cytokeratin-labeled cytotrophoblast cells were identified at all stages examined. Early modification of each artery showed that a plug of intraluminal cytotrophoblast cells temporarily filled the arterial lumen in the vicinity of the trophoblastic shell. Distal to this plug the group of cells tapered as a continuous mass, filling only a portion of the lumen. Endothelial cells were displaced from their basal lamina by closely apposed cytotrophoblast cell processes. Soon thereafter these processes penetrated the basal lamina and achieved contact with smooth muscle cells of the tunica media. As cytotrophoblast cells infiltrated the arterial wall they hypertrophied and secreted extracellular matrix, thereby differentiating into intramural cytotrophoblast. The patent lumen of the artery was reestablished concomitant with the migration of intraluminal cytotrophoblast cells through the arterial tunica intima and into the tunica media. The presence of clusters of cytotrophoblast cells in the arterial wall results in discontinuity of the tunica media and dispersion of the smooth muscle. The combined changes result in expanded circumferences of invaded arteries as well as diminished ability to contract. In portions of arteries adjacent to the trophoblastic shell cytotrophoblast usually occupied the entire perimeter and thickness of the artery wall, while in areas distal only a portion of the wall was invaded. Despite extensive arterial modification, evidence of cell death among the fetal and maternal tissues involved was rare. By later gestation only a few intraluminal cytotrophoblast cells were seen. Intramural cells were surrounded by a thick layer of matrix, but maintained contact with adjacent cells through cytoplasmic processes, some of which formed gap junctions. Maternal cellular and connective tissue elements were excluded from the cytotrophoblast-matrix pads and the cytotrophoblast cells retained attributes of glycoprotein producing cells to term. Spiral arteries were modified well into the spongiosum layer of the endometrium, and some were modified into the myometrium.  相似文献   

2.
During human placentation, fetal cytotrophoblast stem cells differentiate and then invade the uterine wall and its associated spiral arteries. This process anchors the placenta to the uterus and supplies maternal blood to the fetus. Cytotrophoblast invasion in vitro requires the expression of matrix metalloproteinase-9 (MMP-9). Recently, we showed that cytotrophoblasts produce interleukin-10 (IL-10), a potent immunomodulatory cytokine that could have paracrine effects on the maternal immune system. IL-10 synthesis is dramatically downregulated after the first 12 h of culture, while MMP-9 secretion is rapidly upregulated and the cells acquire an invasive phenotype. These observations prompted us to investigate whether IL-10 is an autocrine regulator of cytotrophoblast MMP-9 production. We found that the cells expressed IL-10 receptor mRNA, suggesting that autocrine effects are possible. Adding recombinant IL-10 to cytotrophoblast cultures significantly decreased the cells' MMP-9 expression at both protein and mRNA levels, but did not affect mRNA levels of the tissue inhibitor of metalloproteinase-3. Thus, IL-10 may alter the proteinase/inhibitor balance. IL-10 treatment further caused a net decrease in MMP activity, thereby reducing cytotrophoblast invasiveness. An antibody that neutralized endogenous IL-10 function had the opposite effect in all experiments. Together, these data suggest that IL-10 is an autocrine inhibitor of cytotrophoblast MMP-9 activity and invasiveness.  相似文献   

3.
Implantation and placentation in the baboon share many morphological features with other primates, as well as having some specific distinctions. The ability to use deturgescence of the sex skin as a method of timing ovulation and the ease with which the uterine lumen can be flushed have been used to examine morphological aspects of blastocyst differentiation and implantation in this species. Preimplantation blastocysts were obtained by non-surgical flushing of the uterus 6-8 days after ovulation, and implantation sites were excised from uteri removed on days 10-16 of gestation. All tissues were prepared for electron microscopy by aldehyde fixation and plastic embedding. Maturation of trophoblast from the compacted morula stage to the expanded blastocyst stage includes increase in numbers of polyribosomes, changes in conformation of mitochondria, and development of an effective endocytic apparatus. An endodermal layer forms beneath the inner cell mass prior to loss of the zona pellucida, and parietal endodermal cells extend beyond the inner cell mass. Azonal blastocysts have regions of syncytial trophoblast adjacent to the inner cell mass, and they may represent adhesion stages of early implantation. In early postimplantation stages, trophoblast replaces the uterine epithelium and processes of syncytial trophoblast invade dilated superficial maternal vessels. In subsequent lacunar stages there is rapid elevation of the developing conceptus above the uterine surface as the lacunae enlarge. Cytotrophoblast rapidly enters maternal vessels, and arterioles are partially or completely occluded by migrating cytotrophoblast. The early access to controlled maternal blood flow apparently allows trophoblastic lacunae to expand superficially as opposed to more extensive endometrial invasion.  相似文献   

4.
Whereas the understanding of the mechanisms underlying skeletal and cardiac muscle development has been increased dramatically in recent years, the understanding of smooth muscle development is still in its infancy. This paper summarizes studies on the ontogeny of chicken smooth muscle cells in the wall of the aorta and aortic arch-derived arteries. Employing immunocytochemistry with antibodies against smooth muscle contractile and extracellular matrix proteins we trace smooth muscle cell patterning from early development throughout adulthood. Comparing late stage embryos to young and adult chickens we demonstrate, for all the stages analyzed, that the cells in the media of aortic arch-derived arteries and of the thoracic aorta are organized in alternating lamellae. The lamellar cells, but not the interlamellar cells, express smooth muscle specific contractile proteins and are surrounded by basement membrane proteins. This smooth muscle cell organization of lamellar and interlamellar cells is fully acquired by embryonic day 11 (ED 11). We further show that, during earlier stages of embryogenesis (ED3 through ED7), cells expressing smooth muscle proteins appear only in the peri-endothelial region of the aortic and aortic arch wall and are organized as a narrow band of cells that does not demonstrate the lamellar-interlamellar pattern. On ED9, infrequent cells organized in lamellar-interlamellar organization can be detected and their frequency increases by ED10. In addition to changes in cell organization, we show that there is a characteristic sequence of contractile and extracellular matrix protein expression during development of the aortic wall. At ED3 the peri-endothelial band of differentiated smooth muscle cells is already positive for smooth muscle alpha actin (alphaSM-actin) and fibronectin. By the next embryonic day the peri-endothelial cell layer is also positive for smooth muscle myosin light chain kinase (SM-MLCK). Subsequently, by ED5 this peri-endothelial band of differentiated smooth muscle cells is positive for alphaSM-actin, SM-MLCK, SM-calponin, fibronectin, and collagen type IV. However, laminin and desmin (characteristic basement membrane and contractile proteins of smooth muscle) are first seen only at the onset of the lamellar-interlamellar cell organization (ED9 to ED10). We conclude that the development of chicken aortic smooth muscle involves transitions in cell organization and in expression of smooth muscle proteins until the adult-like phenotype is achieved by mid-embryogenesis. This detailed analysis of the ontogeny of chick aortic smooth muscle should provide a sound basis for future studies on the regulatory mechanisms underlying vascular smooth muscle development.  相似文献   

5.
Vasoactive intestinal peptide (VIP) is an important growth regulator of the embryonic day (E)9-E11 mouse. In comparably aged rat embryos, VIP messenger RNA (mRNA) is not detectable; however, peak concentrations of VIP in maternal rat serum indicate a nonembryonic source. In the current study, mouse maternal and embryonic tissues were examined from E6-E12. Although RT-PCR revealed VIP mRNA in E6-E7 conceptuses, by E8 (when extraembryonic tissues could be separated from the embryo), VIP mRNA was detected only in the decidua/trophoblast. Decidual/trophoblastic VIP mRNA decreased until E10, after which it was not detectable. VIP mRNA was not apparent in the embryo until E11-E12. At E9, VIP immunoreactivity was localized to abundant, diffuse cells in the decidua basalis, which were also immunoreactive for T cell markers. VIP binding sites were dense in the decidua/trophoblast at E6, but gradually decreased until E10, after which they were not apparent. VIP binding sites were detected in embryonic neuroepithelium by E9. The transient presence of VIP binding sites and mRNA in the decidua/trophoblast correlate with the critical period of VIP growth regulation, when VIP mRNA is absent in the embryo. These findings suggest that maternal lymphocytes are the source of VIP's regulating early postimplantation embryonic growth.  相似文献   

6.
The interaction of cytotrophoblast with maternal endometrium, especially endometrial blood vessels, was examined in macaque gestational stages between 2 and 8 days after the onset of implantation. Serial sectioning of these early implantation sites allowed immunostaining of consecutive sections with a number of different antibodies, facilitating cell identification. In the earliest implantation site, immunostaining showed that antibody to cytokeratin stained cytotrophoblast, syncytial trophoblast, epithelial plaque and endometrial gland cells. However, only those cytotrophoblast cells near the maternal-fetal border and within vessels showed surface staining for neural cell adhesion molecules and only syncytial trophoblast showed SP1 reactivity. Even at this early stage cytotrophoblast filled the lumen of superficial arterioles, whereas dilated venules contained only a few cytotrophoblast cells. In later stages endovascular cytotrophoblast not only plugged many spiral arterioles but also migrated into the walls of these arterioles, and progressed into deeper coils. Displacement of endothelial cells and disruption of vessel walls were illustrated with antibody to factor VIII, TGF alpha, and desmin. Clusters of cytotrophoblast cells at the fetal-maternal interface tended to bypass clusters of epithelial plaque cells and larger clusters of maternal fibroblasts, but readily entered all vascular spaces. Consequently the vascular system constituted a major pathway of invasion, although the arterioles were the only component substantially invaded beyond the trophoblastic-shell/endometrial border.  相似文献   

7.
The structure of cytotrophoblast cells in cell columns of the anchoring villi and trophoblastic shell were studied by light and transmission electron microscopy during days 19-70 of pregnancy in the macaque. Additional placentas were prepared for 3H-thymidine autoradiography to demonstrate DNA synthesis. The cell columns of the anchoring villi consist of proximal, mid, and distal regions, and similarly the trophoblastic shell has a region forming the base of the intervillous space, a central zone, and a junctional zone. The proximal region of the cell column is composed of closely apposed, largely undifferentiated cytotrophoblast cells lacking intercellular space. In the mid region, the cells, which contain segregated glycogen areas, are separated into branching strands by extensive extracellular matrix. The distal zone abuts the trophoblastic shell and has fewer mostly peripheral cytotrophoblast cells and abundant matrix. Where cytotrophoblast of the shell is exposed to intervillous space or underlies syncytial trophoblast bordering the intervillous space, pads of cuboidal cells are seen. The central zone of the shell is arranged in strands of contiguous cells. Near the maternal junctional zone, the cells have fewer junctional regions and contain lipid rather than glycogen. Results of thymidine incorporation studies are consistent with observations of others using Ki67 distribution, indicating that cell replication occurs in the proximal region of the cell column, with subsequent migration of cells into the trophoblastic shell. Changes with age include an increase in extracellular matrix in the proximal region, a more linear organization in the expanded central zone of the shell, and a decrease in necrosis at the junction of the shell with endometrium, resulting in close association of shell cytotrophoblast cells, maternal decidual cells, large granular lymphocytes, and macrophages. It is concluded that the cytotrophoblast of the cell columns and trophoblastic shell is a pleomorphic cell type responding to adjacent constituents including the matrix it forms.  相似文献   

8.
PROBLEM: Type-I interferon (IFN) is the protein recognizing pregnancy in ruminants. Although IFN is secreted in early pregnancy, its role is not still clear in other species. Like other cytokines, IFN exerts its biological functions through specific membrane receptors. We have investigated the potential action of IFN in human pregnancy by studying the distribution of the receptors in the human placenta. METHOD: Reactivity to monoclonal antibodies (mAbs) to the type-I IFN-receptor (R) was analyzed by immunohistochemistry in human placental tissues and in cytospins of first trimester trophoblast cells. RESULTS: Type-I IFN-R immunoreactivity was observed mostly in first trimester villous cytotrophoblasts and in the cytotrophoblast cell columns. Trophoblast in the decidua, the epithelium of the uterine glands, and most of the isolated trophoblast cells were also immunoreactive. CONCLUSION: The expression of type-I IFN-R in the highly proliferating and migrating trophoblast suggests that this cytokine has a role in trophoblast growth and invasion.  相似文献   

9.
Trophoblasts cells which are derived from the outer layer of the blastocyst have developed mechanisms by which they can invade the uterus and tap into the maternal circulation. In contrast to tumor cell invasion trophoblast invasion is precisely regulated, being confined spatially to the uterus and temporally to early pregnancy. The invasive properties manifested by trophoblasts are made possible by the secretion of proteolytic enzymes which can degrade components of the extracellular matrix (ECM). A number of investigators have shown that the matrix metalloproteinases (MMPs) are important mediators of trophoblast invasion. The two type IV collagenases, MMP-2 and MMP-9, which specifically degrade type IV collagen and gelatins have been of particular interest in this respect. In this paper we examine the expression and regulation of MMPs and their inhibitors in a series of trophoblast continuous cell lines. These cell lines, ED27, ED31, ED77, and a choriocarcinoma cell line, BeWo, were initially characterized with respect to various properties, including cytokeratin, hCG, and hPL expression. We have looked at the expression of MMPs and their inhibitors in these cell lines and their in vitro invasive behavior. Using zymography and RT-PCR we show that the trophoblast cell lines produce both MMP-2 and MMP-9, while the BeWo produce only MMP-2. Using an in vitro invasion assay the trophoblast cell lines were shown to be capable of invading while the BeWo were unable to invade. These results suggest that expression of MMP-9 in these cells is crucial for invasion. We have also examined the regulation of MMP expression by cytokines and found that MMP-9 expression could be modulated by IL-1 beta in these cell lines. The data presented in this paper suggest that these trophoblast cell lines present an ideal model system to investigate the regulation of metalloproteinases in trophoblast invasion.  相似文献   

10.
The invasion of extravillous trophoblast cells into the maternal endometrium is one of the key events in human placentation. The ability of these cells to infiltrate the uterine wall and to anchor the placenta to it as well as their ability to infiltrate and to adjust utero-placental vessels to pregnancy depends, among other things, on their ability to secrete enzymes that degrade the extracellular matrix. Most of the latter enzymes belong to the family of matrix metalloproteinases. Their activity is regulated by the tissue inhibitors of matrix metalloproteinases. We have studied the distribution patterns of matrix metalloproteinases-1, -2, -3, and -9 and their inhibitors TIMP-1 and TIMP-2 as compared to the distribution of their substrates along the invasive pathway of extravillous trophoblast of 1st, 2nd, and 3rd trimester placentas by means of light microscopy on paraffin and cryostat sections as well as at the ultrastructural level (only 3rd trimester placenta). The comparison of different methods proved to be necessary, since the immunohistochemical distribution patterns of these soluble enzymes are considerably influenced by the pretreatment of tissues. All three methods revealed immunoreactivities of both, proteinases and their inhibitors, not only intracellularly in the extravillous trophoblast but also extracellularly in its surrounding matrix, the distribution patterns depending on the stage of pregnancy and on the degree of differentiation of trophoblast cells along their invasive pathway. Within the extracellular matrix, immunolocalization of matrix metalloproteinases as well as their inhibitors showed a specific relation to certain extracellular matrix molecules.  相似文献   

11.
Regional periprosthetic bone resorption plays an important role of prosthesis loosening. In order to study the possible mechanisms of loosening, we investigated the presence of matrix proteolytic enzymes in the periprosthetic tissue by immunohistochemical technique in 72 patients undergoing revision operation of loosened joint prosthesis, including 22 males and 50 females and aged from 19 to 88 years (mean, 61.7 years). Thirty-nine patients had a loosened hip prosthesis (18 males and 21 females) whereas 33 patients had a loosened knee prosthesis (4 males and 29 females). Tissue specimens collected during revision surgery underwent thin slide sections and H & E staining, and were observed under light microscopy and polarized-light microscopy. The results showed many macrophages, histiocytes, fibroblasts, as well as many phagocytosed metal debris and polyethylene debris in the periprosthetic tissues, suggesting an active bone resorption. Furthermore, we used immunohistochemical techniques to detect the distribution of matrix proteolytic enzymes in periprosthetic tissue, including lysosome enzymes (cathepsin B, cathepsin D and cathepsin G), and matrix metalloproteinase (MMPs, MMP-1, MMP-2, MMP-3). The immunostaining were classified as strong positivity, > 70% positive cells; moderate positivity, 20-70% positive cells; weak/negative, < 20% positive cells. The results showed that cathepsin B, cathepsin D and cathepsin G were found in most fibroblasts and macrophage-like cells, including multinuclear giant cells and epithelioid cells. MMPs were found in most fibroblasts and macrophage-like cells, as well as a scant amount in the extracellular matrix. These enzymes were also found in or around blood vessels, the endothelial cells in the richly vascularized tissue. All negative controls showed no staining. The results of immunoreactive staining ranged from 61.1% to 68.1% of strong to moderate positivity. Since these enzymes were related to the degradation of matrix protein, they may be related to the periprosthetic bone resorption. The further clinical significance needs further investigation.  相似文献   

12.
Etiology and pathogenesis of preeclampsia: current concepts   总被引:3,自引:0,他引:3  
The etiology of preeclampsia is unknown. At present, 4 hypotheses are the subject of extensive investigation, as follows: (1) Placental ischemia-Increased trophoblast deportation, as a consequence of ischemia, may inflict endothelial cell dysfunction. (2) Very low-density lipoprotein versus toxicity-preventing activity-In compensation for increased energy demand during pregnancy, nonesterified fatty acids are mobilized. In women with low albumin concentrations, transporting extra nonesterified fatty acids from adipose tissues to the liver is likely to reduce albumin's antitoxic activity to a point at which very-low density lipoprotein toxicity is expressed. (3) Immune maladaptation-Interaction between decidual leukocytes and invading cytotrophoblast cells is essential for normal trophoblast invasion and development. Immune maladaptation may cause shallow invasion of spiral arteries by endovascular cytotrophoblast cells and endothelial cell dysfunction mediated by an increased decidual release of cytokines, proteolytic enzymes, and free radical species. (4) Genetic imprinting-Development of preeclampsia-eclampsia may be based on a single recessive gene or a dominant gene with incomplete penetrance. Penetrance may be dependent on fetal genotype. The possibility of genetic imprinting should be considered in future genetic investigations of preeclampsia.  相似文献   

13.
Adrenomedullin (AM) is a newly discovered hypotensive peptide which is believed to play an important role for blood pressure control in the adult. Although it has been well established that a major production site of AM is vascular endothelial cells, we now show that AM is most highly expressed in trophoblast giant cells, which are derived from the conceptus and are directly in contact with maternal tissues at the implantation site. Northern blot and in situ hybridization analyses show that the AM mRNA begins to be detected just after implantation and its level peaks at 9.5 days postconception (d.p.c.) in those cells. Expression then falls dramatically after 10.5 d.p.c., coincident with the completion of the mature chorioallantoic placenta. Immunohistochemical analyses show that the AM peptide is secreted from the trophoblast giant cells into the surrounding tissues, i.e., embryo, decidua, and maternal circulation. In contrast, the expression of an AM receptor was not detected by Northern blot analyses in either embryo or trophoblast giant cells at 7 d.p.c., when the AM gene is most highly expressed in the trophoblast giant cells. This suggests that the AM produced and secreted from the embryo's trophoblast giant cells acts on the maternal tissues rather than on the embryonic tissues. Based on these results, we propose that the high production of AM may be the mechanism by which the embryos survive at the early postimplantation period by pooling maternal blood in the implantation site in order to secure nutrition and oxygen before the establishment of efficient embryo-maternal circulation through the mature placenta.  相似文献   

14.
At term pregnancy, the myometrium consists of bundles of smooth muscle cells bound together by varying amounts of connective tissue. Each bundle contains both dark and light muscle cells. During uterine contractions it is believed that the smooth muscle cells become darker, decrease in volume, and exhibit changes in diameter. This is accompanied by widening of the interspaces and by a decrease in the areas of cellular contact. Between contractions, there are more light cells which become arranged closer to each other and exhibit large areas of interdigitation. The significance of these observations in the mechanism of uterine contraction and retraction is discussed. Cell believed to be modified smooth muscle cells occupy the myoendometrial junction and the decidua basalis. They are irregular in shape, poor in myofilament content, and rich in other cytoplasmic organelles and form a loosely arranged layer of cells between the myometrium and the trophoblast. The possible functional significance of these cells is also discussed.  相似文献   

15.
Proteins of the LIM family are critical regulators of development and differentiation in various cell types. We have described the cloning of cysteine-rich protein 2/smooth muscle LIM protein (CRP2/SmLIM), a LIM-only protein expressed in differentiated vascular smooth muscle cells. As a first step toward understanding the potential functions of CRP2/SmLIM, we analyzed its expression after gastrulation in developing mice and compared the expression of CRP2/SmLIM with that of the other 2 members of the CRP subclass, CRP1 and CRP3/MLP. In situ hybridization in whole-mount and sectioned embryos showed that CRP2/SmLIM was expressed in the sinus venosus and the 2 cardiac chambers at embryonic day 9. Vascular expression of CRP2/SmLIM was first seen at embryonic day 10. At subsequent time points, CRP2/SmLIM expression decreased in the heart but remained high in the vasculature. CRP1 was expressed both in vascular and nonvascular tissues containing smooth muscle cells, whereas CRP3/MLP was expressed only in tissues containing striated muscle. These patterns of expression were maintained in the adult animal and suggest an important role for this gene family in the development of smooth and striated muscle.  相似文献   

16.
At embryo implantation, it is postulated that the initial contact between blastocyst and maternal tissues is by adhesion of the trophoblast to the uterine epithelium. This cell-to-cell interaction is thought to be critical for implantation, although the actual adhesive forces have never been determined. In the present study, the atomic force microscope (AFM) was used to study the adhesion between human uterine epithelial cell lines (HEC-1-A; RL95-2) and human trophoblast-type cells (JAR). Specific interaction forces of these epithelia via their apical cell poles were determined on the basis of approach-and-separation cycles. For this purpose, the AFM tip was functionalized with JAR cells, then brought to the surface of uterine epithelial monolayers and was kept in contact for different periods of time (ms, 1, 10, 20, 40 min). The approach force curves displayed repulsive interactions for both HEC-1-A and RL95-2 cells. However, RL95-2 cells (with a smooth surface structure and a thin glycocalyx) showed lower values of the repulsive regime than HEC-1-A cells (with a rough surface structure and a thick glycocalyx). After having overcome repulsive interactions, the initial contact was followed by adhesive interactions. For contact times of 20 and 40 min, RL95-2 cells, but not HEC-1-A cells, showed specific JAR binding, i.e. the separation force curves displayed repeated rupture events in the range of 1-3 nN with a distance between 7-15 microm and, thereafter, a final rupture event at a distance of up to 45 microm. These features point to the formation of strong cell-to-cell bonds. Collectively, these studies provide the first definition of interaction forces between the trophoblast and the uterine epithelium, and are consistent with the hypothesis that an RL95-2-like architecture of uterine epithelial cells, i.e. an non-polarized phenotype, is essential for apical adhesiveness for the human trophoblast.  相似文献   

17.
Vascular wall fibrinolytic system proteins are believed to play a pivotal role in atherogenesis. Tissue-type plasminogen activator (t-PA) and urokinase plasminogen activator (u-PA) influence persistence of luminal thrombi and proteolysis of extracellular matrix, respectively. The major physiologic inhibitor of t-PA and u-PA is plasminogen activator inhibitor type 1 (PAI-1). All three of these fibrinolytic system proteins have been detected in vascular endothelial cells, smooth muscle cells, and macrophages by light microscopic immunohistochemistry. This study was undertaken to delineate, by immunoelectron microscopy, the loci of PAI-1 in smooth muscle cells from intact morphologically normal and atherosclerotic human arteries as well as in isolated and cultured smooth muscle cells from arteries. In intact vessels, PAI-1 immunoreactivity was associated with contractile filaments in cells in both normal and atherosclerotic tissues. Lipid-laden smooth muscle cells in atherosclerotic vessels were mainly of the synthetic phenotype and displayed lesser amounts of PAI-1 associated with rough endoplasmic reticulum and contractile filaments. Isolated smooth muscle cells exhibited either a contractile or synthetic phenotype. In the cells with a contractile phenotype, PAI-1 was associated with the contractile elements, whereas in the cells with a synthetic phenotype, the PAI-1 was associated predominantly with elements of the endoplasmic reticulum. Because PAI-1 is associated predominantly with contractile filaments in smooth muscle cells, the net amount of immunodetectable PAI-1 appears to be greater in contractile compared with synthetic phenotype cells.  相似文献   

18.
The expression of the angiogenic growth factors, vascular endothelial cell growth factor (VEGF) and placenta growth factor (PIGF) was demonstrated in isolated human term cytotrophoblast and in vitro differentiated syncytiotrophoblast. RNase protection assays demonstrated VEGF expression in both cytotrophoblast and syncytiotrophoblast while prominent PIGF expression was detected in both types of trophoblast by Northern blot analyses. VEGF expression increased approximately eightfold in trophoblast cultured under hypoxic conditions (1 per cent O2) yet PIGF expression decreased 73 +/- 5.5 per cent in the same trophoblast. These results suggest distinct regulatory mechanisms govern expression of VEGF and PIGF in trophoblast. Characterization of the VEGF/PIGF receptors, KDR and flt-1, revealed the presence of flt-1 mRNA in isolated cytotrophoblast and in vitro differentiated syncytiotrophoblast. KDR was not detected in the isolated trophoblast. Exogenous rhVEGF induced c-Jun N-terminal kinase (JNK) activity in the normal trophoblast indicating that the flt-1 receptors on trophoblast are functional. Trophoblast-derived VEGF/PIGF could act in a paracrine fashion to promote uterine angiogenesis and vascular permeability within the placental bed. In addition, presence of function flt-1 on normal trophoblast suggests that VEGF/PIGF functions in an autocrine manner to perform an as yet undefined role in trophoblast invasion, differentiation, and/or metabolic activity during placentation.  相似文献   

19.
Embryonic stem cell lines derived from human blastocysts   总被引:8,自引:0,他引:8  
Human blastocyst-derived, pluripotent cell lines are described that have normal karyotypes, express high levels of telomerase activity, and express cell surface markers that characterize primate embryonic stem cells but do not characterize other early lineages. After undifferentiated proliferation in vitro for 4 to 5 months, these cells still maintained the developmental potential to form trophoblast and derivatives of all three embryonic germ layers, including gut epithelium (endoderm); cartilage, bone, smooth muscle, and striated muscle (mesoderm); and neural epithelium, embryonic ganglia, and stratified squamous epithelium (ectoderm). These cell lines should be useful in human developmental biology, drug discovery, and transplantation medicine.  相似文献   

20.
The beta-galactoside-binding proteins galectin-1 and -3 are thought to modulate cell-extracellular matrix interactions in cell adhesion and migration. In this study, their occurrence in human trophoblast has been investigated. In the first trimester placenta galectin-1 is expressed in the cytotrophoblast of the mid and distal cell columns, but absent from the villous and proximal column cytotrophoblast. The villous syncytiotrophoblast was also positive. Galectin-3, on the other hand, was uniformly localized in the villous cytotrophoblast and mid and distal cell columns. Immunolocalization of these proteins in placental bed tissue has shown that galectin-1 and -3 are not present in cytokeratin-positive interstitially migrating cytotrophoblast. The co-localization of galectin-1 with extracellular laminin in cultures of cytotrophoblast, choriocarcinoma or decidual stromal cells is consistent with a role in the organization of extracellular matrix and the regulation of cell motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号