首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-performance AlGaN/GaN high electron-mobility transistors with 0.18-/spl mu/m gate length have been fabricated on a sapphire substrate. The devices exhibited an extrinsic transconductance of 212 mS/mm, a unity current gain cutoff frequency (f/sub T/) of 101 GHz, and a maximum oscillation frequency (f/sub MAX/) of 140 GHz. At V/sub ds/=4 V and I/sub ds/=39.4 mA/mm, the devices exhibited a minimum noise figure (NF/sub min/) of 0.48 dB and an associated gain (Ga) of 11.16 dB at 12 GHz. Also, at a fixed drain bias of 4 V with the drain current swept, the lowest NFmin of 0.48 dB at 12 GHz was obtained at I/sub ds/=40 mA/mm, and a peak G/sub a/ of 11.71 dB at 12 GHz was obtained at I/sub ds/=60 mA/mm. With the drain current held at 40 mA/mm and drain bias swept, the NF/sub min/,, increased almost linearly with the increase of drain bias. Meanwhile, the Ga values decreased linearly with the increase of drain bias. At a fixed bias condition (V/sub ds/=4 V and I/sub ds/=40 mA/mm), the NF/sub min/ values at 12 GHz increased from 0.32 dB at -55/spl deg/C to 2.78 dB at 200/spl deg/C. To our knowledge, these data represent the highest f/sub T/ and f/sub MAX/, and the best microwave noise performance of any GaN-based FETs on sapphire substrates ever reported.  相似文献   

2.
We report on the dc and RF characterization of laterally scaled, Si-SiGe n-MODFETs. Devices with gate length, L/sub g/, of 80 nm had f/sub T/=79 GHz and f/sub max/=212 GHz, while devices with L/sub g/=70 nm had f/sub T/ as high as 92 GHz. The MODFETs displayed enhanced f/sub T/ at reduced drain-to-source voltage, V/sub ds/, compared to Si MOSFETs with similar f/sub T/ at high V/sub ds/.  相似文献   

3.
AlGaN-GaN high-electron mobility transistors (HEMTs) based on high-resistivity silicon substrate with a 0.17-/spl mu/m T-shape gate length are fabricated. The device exhibits a high drain current density of 550 mA/mm at V/sub GS/=1 V and V/sub DS/=10 V with an intrinsic transconductance (g/sub m/) of 215 mS/mm. A unity current gain cutoff frequency (f/sub t/) of 46 GHz and a maximum oscillation frequency (f/sub max/) of 92 GHz are measured at V/sub DS/=10 V and I/sub DS/=171 mA/mm. The radio-frequency microwave noise performance of the device is obtained at 10 GHz for different drain currents. At V/sub DS/=10 V and I/sub DS/=92 mA/mm, the device exhibits a minimum-noise figure (NF/sub min/) of 1.1 dB and an associated gain (G/sub ass/) of 12 dB. To our knowledge, these results are the best f/sub t/, f/sub max/ and microwave noise performance ever reported on GaN HEMT grown on Silicon substrate.  相似文献   

4.
AlGaAs/InGaAs MODFETs having 25% indium in the channel and L/sub G/=0.35 mu m have been fabricated. From DC device characterisation, a maximum saturation current of 670 mA/mm and an extrinsic transconductance of 500 mS/mm have been measured. A maximum unilateral gain cutoff frequency of f/sub c/=205 GHz and a maximum current gain cutoff frequency of f/sub T/=86 GHz have been achieved. Bias dependence of f/sub c/ and f/sub T/ has been measured. At 12 GHz a minimum noise figure of NF=0.8 dB and an associated gain of 11 dB have been measured.<>  相似文献   

5.
We report a novel approach in fabricating high-performance enhancement mode (E-mode) AlGaN/GaN HEMTs. The fabrication technique is based on fluoride-based plasma treatment of the gate region in AlGaN/GaN HEMTs and post-gate rapid thermal annealing with an annealing temperature lower than 500/spl deg/C. Starting with a conventional depletion-mode HEMT sample, we found that fluoride-based plasma treatment can effectively shift the threshold voltage from -4.0 to 0.9 V. Most importantly, a zero transconductance (g/sub m/) was obtained at V/sub gs/=0 V, demonstrating for the first time true E-mode operation in an AlGaN/GaN HEMT. At V/sub gs/=0 V, the off-state drain leakage current is 28 /spl mu/A/mm at a drain-source bias of 6 V. The fabricated E-mode AlGaN/GaN HEMTs with 1 /spl mu/m-long gate exhibit a maximum drain current density of 310 mA/mm, a peak g/sub m/ of 148 mS/mm, a current gain cutoff frequency f/sub T/ of 10.1 GHz and a maximum oscillation frequency f/sub max/ of 34.3 GHz.  相似文献   

6.
GaAs-based transistors with the highest f/sub T/ and lowest noise figure reported to date are presented in this letter. A 50-nm T-gate In/sub 0.52/Al/sub 0.48/As/In/sub 0.53/Ga/sub 0.47/As metamorphic high-electron mobility transistors (mHEMTs) on a GaAs substrate show f/sub T/ of 440 GHz, f/sub max/ of 400 GHz, a minimum noise figure of 0.7 dB and an associated gain of 13 dB at 26 GHz, the latter at a drain current of 185 mA/mm and g/sub m/ of 950 mS/mm. In addition, a noise figure of below 1.2 dB with 10.5 dB or higher associated gain at 26 GHz was demonstrated for drain currents in the range 40 to 470 mA/mm at a drain bias of 0.8 V. These devices are ideal for low noise and medium power applications at millimeter-wave frequencies.  相似文献   

7.
High-performance 0.15 mu m gate length modulation-doped field-effect transistors (MODFETs) have been fabricated on a lattice-matched InAlAs/InGaAs heterostructure grown by organic vapour phase epitaxy (MOVPE). Excellent 'kink-free' DC characteristics with extrinsic transconductance g/sub m/ of 1080 mS/mm at a drain current of 508 mA/mm have been achieved. A unity current-gain cutoff frequency f/sub T/ of 187 GHz at room temperature has been measured, which is the highest value reported for MOVPE-grown lattice-matched InAlAs/InGaAs MODFETs.<>  相似文献   

8.
InP/In/sub 0.53/Ga/sub 0.47/As/InP double heterojunction bipolar transistors (DHBT) have been designed for increased bandwidth digital and analog circuits, and fabricated using a conventional mesa structure. These devices exhibit a maximum 450 GHz f/sub /spl tau// and 490 GHz f/sub max/, which is the highest simultaneous f/sub /spl tau// and f/sub max/ for any HBT. The devices have been scaled vertically for reduced electron collector transit time and aggressively scaled laterally to minimize the base-collector capacitance associated with thinner collectors. The dc current gain /spl beta/ is /spl ap/ 40 and V/sub BR,CEO/=3.9 V. The devices operate up to 25 mW//spl mu/m/sup 2/ dissipation (failing at J/sub e/=10 mA//spl mu/m/sup 2/, V/sub ce/=2.5 V, /spl Delta/T/sub failure/=301 K) and there is no evidence of current blocking up to J/sub e//spl ges/12 mA//spl mu/m/sup 2/ at V/sub ce/=2.0 V from the base-collector grade. The devices reported here employ a 30-nm highly doped InGaAs base, and a 120-nm collector containing an InGaAs/InAlAs superlattice grade at the base-collector junction.  相似文献   

9.
Using high-quality polycrystalline chemical-vapor-deposited diamond films with large grains (/spl sim/100 /spl mu/m), field effect transistors (FETs) with gate lengths of 0.1 /spl mu/m were fabricated. From the RF characteristics, the maximum transition frequency f/sub T/ and the maximum frequency of oscillation f/sub max/ were /spl sim/ 45 and /spl sim/ 120 GHz, respectively. The f/sub T/ and f/sub max/ values are much higher than the highest values for single-crystalline diamond FETs. The dc characteristics of the FET showed a drain-current density I/sub DS/ of 550 mA/mm at gate-source voltage V/sub GS/ of -3.5 V and a maximum transconductance g/sub m/ of 143 mS/mm at drain voltage V/sub DS/ of -8 V. These results indicate that the high-quality polycrystalline diamond film, whose maximum size is 4 in at present, is a most promising substrate for diamond electronic devices.  相似文献   

10.
A high breakdown voltage and a high turn-on voltage (Al/sub 0.3/Ga/sub 0.7/)/sub 0.5/In/sub 0.5/P/InGaAs quasi-enhancement-mode (E-mode) pseudomorphic HEMT (pHEMTs) with field-plate (FP) process is reported for the first time. Between gate and drain terminal, the transistor has a FP metal of 1 /spl mu/m, which is connected to a source terminal. The fabricated 0.5/spl times/150 /spl mu/m/sup 2/ device can be operated with gate voltage up to 1.6 V owing to its high Schottky turn-on voltage (V/sub ON/=0.85 V), which corresponds to a high drain-to-source current (I/sub ds/) of 420 mA/mm when drain-to-source voltage (V/sub ds/) is 3.5 V. By adopting the FP technology and large barrier height (Al/sub 0.3/Ga/sub 0.7/)/sub 0.5/In/sub 0.5/P layer design, the device achieved a high breakdown voltage of -47 V. The measured maximum transconductance, current gain cutoff frequency and maximum oscillation frequency are 370 mS/mm, 22 GHz , and 85 GHz, respectively. Under 5.2-GHz operation, a 15.2 dBm (220 mW/mm) and a 17.8 dBm (405 mW/mm) saturated output power can be achieved when drain voltage are 3.5 and 20 V. These characteristics demonstrate that the field-plated (Al/sub 0.3/Ga/sub 0.7/)/sub 0.5/In/sub 0.5/P E-mode pHEMTs have great potential for microwave power device applications.  相似文献   

11.
The influences of (NH/sub 4/)/sub 2/S/sub x/ treatment on an AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor (PHEMT) are studied and demonstrated. Upon the sulfur passivation, the studied device exhibits better temperature-dependent dc and microwave characteristics. Experimentally, for a 1/spl times/100 /spl mu/m/sup 2/ gate/dimension PHEMT with sulfur passivation, the higher gate/drain breakdown voltage of 36.4 (21.5) V, higher turn-on voltage of 0.994 (0.69) V, lower gate leakage current of 0.6 (571) /spl mu/A/mm at V/sub GD/=-22 V, improved threshold voltage of -1.62 (-1.71) V, higher maximum transconductance of 240 (211) mS/mm with 348 (242) mA/mm broad operating regime (>0.9g/sub m,max/), and lower output conductance of 0.51 (0.53) mS/mm are obtained, respectively, at 300 (510) K. The corresponding unity current gain cutoff frequency f/sub T/ (maximum oscillation frequency f/sub max/) are 22.2 (87.9) and 19.5 (59.3) GHz at 250 and 400 K, respectively, with considerably broad operating regimes (>0.8f/sub T/,f/sub max/) larger than 455 mA/mm. Moreover, the relatively lower variations of device performances over wide temperature range (300/spl sim/510 K) are observed.  相似文献   

12.
The DC and RF characteristics of Ga/sub 0.49/In/sub 0.51/P-In/sub 0.15/Ga/sub 0.85/As enhancement- mode pseudomorphic HEMTs (pHEMTs) are reported for the first time. The transistor has a gate length of 0.8 /spl mu/m and a gate width of 200 /spl mu/m. It is found that the device can be operated with gate voltage up to 1.6 V, which corresponds to a high drain-source current (I/sub DS/) of 340 mA/mm when the drain-source voltage (V/sub DS/) is 4.0 V. The measured maximum transconductance, current gain cut-off frequency, and maximum oscillation frequency are 255.2 mS/mm, 20.6 GHz, and 40 GHz, respectively. When this device is operated at 1.9 GHz under class-AB bias condition, a 14.7-dBm (148.6 mW/mm) saturated power with a power-added efficiency of 50% is achieved when the drain voltage is 3.5 V. The measured F/sub min/ is 0.74 dB under I/sub DS/=15 mA and V/sub DS/=2 V.  相似文献   

13.
AlGaN/GaN HEMTs on SiC with f/sub T/ of over 120 GHz   总被引:1,自引:0,他引:1  
AlGaN/GaN high electron mobility transistors (HEMTs) grown on semi-insulating SiC substrates with a 0.12 /spl mu/m gate length have been fabricated. These 0.12-/spl mu/m gate-length devices exhibited maximum drain current density as high as 1.23 A/mm and peak extrinsic transconductance of 314 mS/mm. The threshold voltage was -5.2 V. A unity current gain cutoff frequency (f/sub T/) of 121 GHz and maximum frequency of oscillation (f/sub max/) of 162 GHz were measured on these devices. These f/sub T/ and f/sub max/ values are the highest ever reported values for GaN-based HEMTs.  相似文献   

14.
We report an InP-InGaAs-InP double heterojunction bipolar transistor (DHBT), fabricated using a conventional triple mesa structure, exhibiting a 370-GHz f/sub /spl tau// and 459-GHz f/sub max/, which is to our knowledge the highest f/sub /spl tau// reported for a mesa InP DHBT-as well as the highest simultaneous f/sub /spl tau// and f/sub max/ for any mesa HBT. The collector semiconductor was undercut to reduce the base-collector capacitance, producing a C/sub cb//I/sub c/ ratio of 0.28 ps/V at V/sub cb/=0.5 V. The V/sub BR,CEO/ is 5.6 V and the devices fail thermally only at >18 mW//spl mu/m/sup 2/, allowing dc bias from J/sub e/=4.8 mA//spl mu/m/sup 2/ at V/sub ce/=3.9 V to J/sub e/=12.5 mA//spl mu/m/sup 2/ at V/sub ce/=1.5 V. The device employs a 30 nm carbon-doped InGaAs base with graded base doping, and an InGaAs-InAlAs superlattice grade in the base-collector junction that contributes to a total depleted collector thickness of 150 nm.  相似文献   

15.
AlGaN-GaN HEMTs on Si with power density performance of 1.9 W/mm at 10 GHz   总被引:1,自引:0,他引:1  
AlGaN-GaN high electron mobility transistors (HEMTs) on silicon substrate are fabricated. The device with a gate length of 0.3-/spl mu/m and a total gate periphery of 300 /spl mu/m, exhibits a maximum drain current density of 925 mA/mm at V/sub GS/=0 V and V/sub DS/=5 V with an extrinsic transconductance (g/sub m/) of about 250 mS/mm. At 10 GHz, an output power density of 1.9 W/mm associated to a power-added efficiency of 18% and a linear gain of 16 dB are achieved at a drain bias of 30 V. To our knowledge, these power results represent the highest output power density ever reported at this frequency on GaN HEMT grown on silicon substrates.  相似文献   

16.
Reports on the CW power performance at 20 and 30 GHz of 0.25 /spl mu/m /spl times/ 100 /spl mu/m AlGaN/GaN high electron mobility transistors (HEMTs) grown by MOCVD on semi-insulating SiC substrates. The devices exhibited current density of 1300 mA/mm, peak dc extrinsic transconductance of 275 mS/mm, unity current gain cutoff (f/sub T/) of 65 GHz, and maximum frequency of oscillation (f/sub max/) of 110 GHz. Saturated output power at 20 GHz was 6.4 W/mm with 16% power added efficiency (PAE), and output power at 1-dB compression at 30 GHz was 4.0 W/mm with 20% PAE. This is the highest power reported for 0.25-/spl mu/m gate-length devices at 20 GHz, and the 30 GHz results represent the highest frequency power data published to date on GaN-based devices.  相似文献   

17.
GaAs MESFETs have been fabricated on a silicon substrate using a molecular beam epitaxy grown film detached from its growth substrate and attached on a silicon substrate covered with a dielectric. The device processing is done on the silicon substrate. The MESFETs exhibit I/sub DSS/=130 mA/mm, g/sub m/=135 mS/mm and for 1.3 mu m gate length unity current gain cut-off frequency f/sub T/ of 12 GHz. Excellent device isolation with subpicoampere leakage currents is obtained.<>  相似文献   

18.
Hwang  T. Feng  M. Lau  C.L. 《Electronics letters》1991,27(11):929-931
Subhalf-micrometre gate length ion-implanted GaAs MESFETs have been fabricated on 3 inch diameter substrates using trilayer deep UV lithography. Implanted MESFETs with 0.3 mu m gate lengths exhibit a maximum extrinsic transconductance of 205 mS/mm at a drain current of 600 mA/mm. From S-parameter measurements, a current gain cutoff frequency f/sub t/ of 56 GHz and a maximum available gain cutoff frequency f/sub max/ greater than 90 GHz are achieved. The gate-to-drain diode characteristics of the devices show a sharp breakdown voltage of 13-15 V. The high drain current-drain voltage and microwave characteristics indicate that ion-implanted technology with trilayer deep UV lithography has potential for the manufacture of power devices and amplifiers for Q-band communication applications. This is the first reported result using trilayer deep UV lithography to demonstrate both f/sub t/ over 56 GHz and 13-15 V gate-to-drain breakdown on 0.3 mu m gate-length ion-implanted GaAs MESFETs.<>  相似文献   

19.
In order to improve the electrical characteristics of AlGaN-GaN heterostructures for applications in high electron mobility transistors (HEMTs), high-quality AlGaN-GaN was grown by way of metal-organic chemical vapor deposition on sapphire. We applied isoelectronic Al doping into the GaN-channel layers of modified AlGaN-Al-doped GaN channel-GaN heterostructures. We then compared the electrical performance of the fabricated heterostructures with those of conventional AlGaN-GaN heterostructures. The AlGaN-GaN HEMTs that were fabricated achieved power densities of up to 4.2 W/mm, some of the highest values ever reported for 0.25-/spl mu/m gate length AlGaN-GaN HEMTs. These devices exhibited a maximum drain current density of 1370 mA/mm, a high transconductance of 230 mS/mm, a short-circuit current gain cutoff frequency (f/sub T/) of 67 GHz, and a maximum frequency of oscillation (f/sub max/) of 102 GHz.  相似文献   

20.
We report the fabrication and the dc characterization of the first In/sub 0.52/Al/sub 0.48/As-In/sub 0.53/Ga/sub 0.47/As long double-gate (DG) high-electron mobility transistors (HEMTs). These devices have been obtained using a transferred substrate technique. Although the layer structure has not been optimized, a maximum extrinsic transconductance gm of 450 mS/mm is obtained. At the same bias voltage, the drain current I/sub d/ is 120 mA/mm, which gives a large ratio gm/I/sub d/ of 3.8 V/sup -/, indicating the improvement of the charge control efficiency due to the DG structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号