首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Cable grafting was reintroduced in the beginning of the 1980's as a modified method for repair of large polyfascicular nerves without group arrangement such as trunks and cords of the brachial plexus, sciatic nerve and its divisions, or the other main nerve trunks. We used this method in 25 patients with brachial plexus injury and 29 patients with injuries to the sciatic nerve. Results were analyzed according to the individual nerve elements and were available for 32 elements of the brachial plexus and for 19 tibial and 19 peroneal divisions of the sciatic nerve. We defined useful functional recovery according to the priorities in repair of the brachial plexus and sciatic nerve with lower limits M3 for relevant muscles and functions and S2 for sensory function. Results were especially favourable for the brachial plexus with a total rate of recovery 84% and for tibial division with the same total rate of recovery. On the basis of the results obtained we were able to conclude that the results of the modified cable grafting were at least similar to those of interfascicular nerve grafting and that this method could be useful for repair of large polyfascicular nerve trunks. However, the main advantage of this technique is a considerable gain in operative time.  相似文献   

2.
OBJECTIVE: To determine the ontogeny of functional recovery after peripheral nerve crush injury. DESIGN: Comparative study in rats of varying ages. MATERIAL AND METHODS: Sixty-second crush injury was performed on the left posterior tibial nerve. Control animals underwent either nerve transection or sham procedure. Nerve function was evaluated 2, 4, and 8 weeks following injury by walking track analysis. Print length ratio (PLR), (ratio of normal right-sided print length to experimental left-sided print length), was used to evaluate functional recovery. MEASUREMENTS AND MAIN RESULTS: Two weeks after crush injury, adult rats experienced significantly greater functional impairment than both 4-day-old and 3-week-old animals (p < 0.05). Four weeks after injury, the difference in function between 4-day-old and adult rats and between 3-week-old and adult rats became insignificant. Complete recovery had been achieved by 8 weeks in all groups. CONCLUSIONS: These results demonstrate faster functional recovery after nerve injury in immature rats than in adults.  相似文献   

3.
Regeneration of motor axons is enhanced if they have sprouted prior to nerve injury. We examined whether sensory axon regeneration and recovery of pain response was affected by previous collateral sprouting. In the experimental group of rats, the right saphenous, tibial, and sural nerves were transected and ligated. The peroneal nerve was left to sprout into the adjacent denervated skin. Two months later, the axons of the peroneal nerve were crushed in the sciatic nerve. In the control group, the right sciatic nerve was crushed at the same time that the saphenous, tibial, and sural nerves were transected. Recovery of pain response in the foot was determined by the skin pinch test. Sensory axon elongation rate was measured by the nerve pinch test. The number of myelinated axons was determined in nerve cross sections stained by Azur blue. Recovery of pain sensitivity in the animals of the experimental group was delayed for 2-3 weeks in comparison to the control group. Moreover, the spatial pattern of pain response in the experimental group was irregular, displaying residual regions of insensitive skin which were not present in controls. The elongation rate of regenerating sensory axons in the experimental group was not decreased, and the number of myelinated axons in the peroneal nerves was even about 10% higher than in the control group. Therefore, we assume that the terminal arborization of the neurilemmal tubes pertaining to the former axon sprouts delayed regrowth of sensory axon terminals in the skin.  相似文献   

4.
A retrospective comparison of twelve patients with radial nerve transection treated by nerce repair, and thirteen similar patients treated by tendon transfer only, showed an average time to recovery of 7.5 months after nerve repair, and eight weeks after transfer. In view of this, a policy of early tendon transfer instead of radial nerve suture is advised. Results are reported in nine patients who had tendon transfers at an average of thirteen days after nerve injury.  相似文献   

5.
The object of this experimental study was to investigate the influence of low-energy He-Ne laser on the motor nerve cells of the spinal cord. The experimental study included as follws: (1) Four rabbits were used in this experiment. The L5-6 spinal cord segment was irradiated by He-Ne laser percutaneously, the nerve velocity of the comon peroneal nerve was measured in order to determine the function of the spinal motor nerve cells when the peripheral nerve was intact. (2) The common peroneal nerve was transected on one side wothout repair, two weeks after laser irradiation, the grey mater of the spinal cord of L5-6 segment was procured for electronic microscopic examination. (3) The common peroneal nerve on the contralateral side was transected and followed by end-to-end anastomosis, and laser irradiation was done on the same spinal cord segment. Two weeks after irradiation, the nerve velocity of the common peroneal nerve and the toe expanding test were investigated. The results were: (1) the He-Ne laser can influence the spinal motor nerve cells function as expressed by latent rate when the peripherial nerve is intact. i.e. the nerve velocity is slower than mormal, and the amplitude is markedly decreared. (2) the change of the microstructure of the spinal motor nerve cells is comparatively slight in the 10 and 15 minutes groups. (3) the recovery of the nerve velocity and the toe expansion are more earlier in the 15 min. group. In short, the low-energy He-Ne laser can influence the function of the spinal motor nerve cells.  相似文献   

6.
A 55-year-old male presented complaining of pain at his right fourth toe and dorsal fourth web space. Physical examination findings pointed to a lesion affecting the superficial peroneal nerve. A schwannoma of the superficial peroneal nerve was subsequently excised, relieving the patient's symptoms. In the differential diagnosis of nontraumatic and/or nonarthritic toe and foot pain, benign tumors, including schwannomas of the tibial and peroneal nerves, should be considered.  相似文献   

7.
The effects of denervated muscle and Schwann cells on collateral sprouting from peripheral nerve were studied in the peroneal and tibial nerves of 48 Sprague-Dawley rats. Three groups were prepared. In group MSW (muscle-Schwann cell-window), the peroneal nerves were transected 3 mm below the sciatic bifurcation. The proximal stumps were sealed in a blocked tube to prevent regeneration and the distal stumps were implanted into denervated muscle cells that were wrapped around the ipsilateral tibial nerve, which had a window of perineurium resected. Schwann cells from the ipsilateral sural nerve were implanted into the muscle. Group MS (muscle-Schwann cell) was similar to group MSW, except that the tibial nerve perineurium was kept intact. In group MW (muscle-window), the muscle was prepared without Schwann cells and the tibial nerve perineurium was windowed. S-100 immunostain was used to identify the Schwann cells surviving 1 week after transplantation. After 16 weeks of regeneration, horseradish peroxidase tracer was used to label motor neurons and sensory neurons reinnervating the peroneal nerve. Myelinated axons of the reinnervated peroneal nerves were quantified with the Bioquant OS/2 computer system (R&M Biometrics, Nashville, TN). A mean of 169 motor neurons in group MSW, 64 in group MW, and 26 in group MS reinnervated the peroneal nerve. In the dorsal root ganglion, the mean number of labeled sensory neurons was 1,283 in group MSW, 947 in group MS, and 615 in group MW. The mean number of myelinated axons in the reinnervated peroneal nerve was 1,659 in group MSW, 359 in group MS, and 348 in group MW. Reinnervated anterolateral compartment muscles in group MSW were significantly heavier than those in group MS or MW. This study demonstrates that the transplantation of denervated muscle and Schwann cells promotes motor and sensory nerve collateral sprouting through a perineurial window.  相似文献   

8.
Neuropeptide expression in primary sensory neurons is highly plastic in response to peripheral nerve axotomy. While neuropeptide changes following complete sciatic nerve injury have been extensively studied, much less is known about the effects of partial sciatic nerve injuries on neuropeptide plasticity. Galanin. a possible endogenous analgesic peptide, was up-regulated in primary sensory neurons following complete sciatic nerve injury. We investigated the effects of partial sciatic nerve injuries on galanin expression in primary sensory neurons, and compared this effect with that after complete sciatic nerve injury. Complete transection, partial transection and chronic constriction injury were made, respectively, on the sciatic nerves of three groups of rats at high thigh level. Animals were allowed to survive for four and 14 days before being killed. L4 and L5 dorsal root ganglia, L4 5 spinal cord and lower brainstem were processed for galanin immunocytochemical staining. After all three types of sciatic nerve injuries, galanin-immunoreactive neurons were significantly increased in the ipsilateral dorsal root ganglia, and galanin-immunoreactive axonal fibres were dramatically increased in the superficial laminae of the dorsal horn and the gracile nuclei, compared to the contralateral side. However, in partial injury models, the percentages of galanin-immunoreactive dorsal root ganglion neurons were significantly higher than in complete nerve transection. Size frequency distribution analysis detected that more medium- and large-size galanin-immunoreactive dorsal root ganglion neurons were present after partial nerve transection and constriction injury than after complete nerve transection. Using a combined approach of retrograde tracing of flurorescent dyes and galanin immunostaining, we found that a partial transection increased the proportions of galanin-immunoreactive neurons among both axotomized and non-axotomized neurons. Galanin-immunoreactive axonal fibres were not only detected in the superficial laminae, but also in the deeper laminae of the dorsal horn of partial injury animals. Furthermore, more galanin-immunoreactive axonal fibres were observed in the ipsilateral gracile nuclei of partially injured rats than in completely injured rats. We conclude that partial sciatic nerve injuries induced greater galanin up-regulation in medium- and large-size dorsal root ganglion neurons than complete sciatic nerve injury. Galanin expression in primary sensory neurons seems to be differentially regulated following partial and complete sciatic nerve injuries.  相似文献   

9.
The functional somatotopic reorganization of the lumbar spinal cord dorsal horn after nerve injury was studied in the rat by mapping the stimulus-evoked distribution of neurons expressing proto-oncogene c-fos. In three different nerve injury paradigms, the saphenous nerve was electrically stimulated at C-fibre strength at survival times ranging from 40 h to more than six months: 1) Saphenous nerve stimulation from three weeks onwards after ipsilateral sciatic nerve transection resulted in an increase in the number of Fos-immunoreactive neurons within the dorsal horn saphenous territory in laminae I-II, and an expansion of the saphenous territory into the denervated sciatic territory until 14 weeks postinjury. 2) Saphenous nerve stimulation from five days onwards after ipsilateral sciatic nerve section combined with saphenous nerve crush resulted in an increase in the number of Fos-immunoreactive neurons within the dorsal horn saphenous nerve territory, and an expansion of the saphenous nerve territory into the denervated sciatic nerve territory. 3) Stimulation of the crushed nerve (without previous adjacent nerve section) at five days, but not at eight months resulted in a temporary increase in the number of Fos-immunoreactive neurons within the territory of the injured nerve, and no change in area at either survival time. The results indicate that nerve injury results in an increased capacity of afferents in an adjacent uninjured, or regenerating nerve, to excite neurons both in its own and in the territory of the permanently injured nerve in the dorsal horn. The onset and duration of the increased postsynaptic excitability and expansion depends on the types of nerve injuries involved. These findings indicate the complexity of the central changes that follows in nerve injuries that contain a mixture of uninjured, regenerating and permanently destroyed afferents.  相似文献   

10.
This study reevaluated the possibility of using predegenerated nerves as donor nerve allografts for nerve repair and compared the results of functional recovery to those obtained after standard, fresh nerve allograft repair. Twenty donor rats underwent a ligature/ section of the left sciatic nerve 4 weeks before nerve graft harvesting. Forty recipient rats underwent severing of the left sciatic nerve leaving a 15-mm gap between the nerve stumps. Graft repair was undertaken using either the predegenerated left sciatic nerve of the 20 donor rats (predegenerated group, 20 recipient rats) or the normal right sciatic nerve of the 20 donor rats (fresh group, 20 recipient rats). Recovery of function was assessed by gait analysis, electrophysiologic testing and histologic studies. Walking tracks measurements at 2 and 3 months, electromyography parameters at 2 and 3 months, peroperative nerve conduction velocity and nerve action potential amplitude measurements at 3 months, as well as assessments of myelinated nerve fiber density and surface of myelination showed that fresh and predegenerated nerve grafts induced a comparable return of function although there was some trend in higher electrophysiologic values in the predegenerated group. The only slight but significant difference was a larger mean nerve fiber diameter in the nerve segment distal to a predegenerated nerve graft compared to a fresh nerve graft. Although our study does not show a dramatic long-term advantage for predegenerated nerve grafts compared to fresh nerve grafts, their use as prosthetic material is encouraging.  相似文献   

11.
Excitability of rat dorsal root axons were studied 3 weeks after injury to the sciatic nerve. Whole nerve recordings were obtained from injured and control nerves in a sucrose gap chamber. Constant current depolarization pulses (30-200 ms) applied approximately 50% above the stimulus strength required for maximal amplitude compound action potentials (CAPs) evoked a burst of action potentials in the dorsal root which displayed spike adaptation. The depolarization-induced burst response of the dorsal roots was greatly reduced after crush or transection of the sciatic nerve. However, application of the potassium channel blocker, tetraethylammonium (TEA), restored the burst discharge in injured dorsal root axons. Brief tetanic stimulation of the dorsal root also induced an afterhyperpolarization (AHP) that was twice as large in the transection group as compared to the control group, and which was blocked by TEA. There were no changes seen in the amplitude of the compound action potential, frequency-following characteristics, refractory properties, or 4-AP sensitivity in the dorsal roots after peripheral nerve injury. These results suggest that there is enhanced spike adaptation that occurs at the same time as an increase in the sensitivity to the potassium channel blocker, TEA, in axon regions proximal to the site of nerve injury and have implications for the pathophysiology of nerve injury.  相似文献   

12.
The purpose of the present study was to determine whether tactile cutaneous reflexes from the skin of the foot contain location-specific information during human walking. Muscular responses to non-nociceptive electrical stimulation of the sural, posterior tibial, and superficial peroneal nerves, each supplying a different skin area of the foot, were studied in both legs during walking on a treadmill. For all three nerves the major responses in all muscles were observed at a similar latency of approximately 80-85 msec. In the ipsilateral leg these reflex responses and their phase-dependent modulation were highly nerve-specific. During most of the stance phase, for example, the peroneal and tibial nerves generally evoked small responses in the biceps femoris muscle. In contrast, during late swing large facilitations generally occurred for the peroneal nerve, whereas suppressions were observed for the tibial nerve. In the contralateral leg the reflex responses for the three nerves were less distinct, although some nerve specificity was observed for individual subjects. It is concluded that non-nociceptive stimulation of the sural, posterior tibial, and superficial peroneal nerves each evokes distinct reflex responses, indicating the presence of location-specific information from the skin of the foot in cutaneous reflexes during human walking. It will be argued that differentially controlled reflex pathways can account for the differences in the phase-dependent reflex modulation patterns of the three nerves, which points to the dynamic control of this information during the course of a step cycle.  相似文献   

13.
The study was conducted in two parts. First, evoked responses to common peroneal nerve stimulation at four electrode positions were tested in 25 awake volunteers. The initial threshold stimulus current (ITS) (minimal current producing dorsiflexion or eversion of the ankle joint and great toe) and the supramaximal stimulus current (SMS) (the point at which further increases in current did not produce increases in twitch tension) were defined. SMS was not reliably achieved using electrodes at each side of the fibular head. However, an exploratory electrode accurately located the nerve and enabled SMS in all volunteers (SMS/ITS = 3.4). Second, 16 anesthetized, paralyzed patients were studied. The common peroneal and ulnar nerves were stimulated simultaneously. Evoked tension was recorded at the adductor pollicis using a force transducer and at the great toe by a blinded observer. Reversal was given when the train-of-four count at the great toe reached four. Onset times were longer, and median posttetanic counts were greater, at the great toe compared with the adductor pollicis. Time from reversal to train-of-four ratio = 0.7 at the adductor pollicis was 207+/-160 s. We conclude that neuromuscular monitoring at the common peroneal nerve was not equivalent to monitoring at the ulnar nerve. IMPLICATIONS: Accurate neuromuscular monitoring is important for patient safety. We studied the accuracy of monitoring at the common peroneal nerve in volunteers and patients. An exploratory electrode accurately located the common peroneal nerve. Monitoring at the common peroneal nerve was not equivalent to monitoring at the ulnar nerve in patients.  相似文献   

14.
The age-dependent loss of the major peripheral nerve lipids (cholesterol, phospholipid, and total galactolipid) was quantitated over a period of 9 weeks of Wallerian degeneration induced by surgical transection of rabbit sciatic nerves in animals of several ages. Proportionate losses of these lipids were determined by calculating the content of each lipid on a per nerve and on a per gram fresh weight basis remaining after a given period of Wallerian degeneration as a percent of original normal values at several time following surgery. The proportionate loss of each lipid from the distal stump was the most prompt and the most complete in nerves transected at 2 weeks of age, and the least in nerves transected at 20 weeks of age. The prompter clearance of these lipids from younger than older degenerating nerve gives convincing evidence that the suggestion from light-microscopic studies of faster clearance of neural debris in younger than in older animals is correct. A possible relationship between these biochemical findings and the phenomenon of greater functional recovery from peripheral nerve injury in younger than in older subjects is discussed.  相似文献   

15.
Levels of calcitonin gene-related peptide immunoreactivity (CGRP-ir) and substance P immunoreactivity (SP-ir) in the lumbar dorsal spinal cord of rats with either sciatic nerve transection or chronic constriction injury (CCI) were measured using radioimmunoassay. Significant decreases in CGRP-ir and SP-ir occurred in the ipsilateral spinal cord at 10 and 31 days after nerve transection. An ipsilateral decrease in SP-ir occurred 60 days after CCI. In addition, contralateral decreases in CGRP-ir and SP-ir occurred 31 days after transection and 60 days after CCI. Transection of the sciatic nerve produced greater decreases in peptide levels than did the CCI. Changes in spinal levels of these peptides may be involved in the appearance of neuropathic signs associated with nerve injury.  相似文献   

16.
We investigated the retrograde axonal transport of 125I-labeled neurotrophins (NGF, BDNF, NT-3, and NT-4) from the sciatic nerve to dorsal root ganglion (DRG) sensory neurons and spinal motor neurons in normal rats or after neuronal injury. DRG neurons showed increased transport of all neurotrophins following crush injury to the sciatic nerve. This was maximal 1 day after sciatic nerve crush and returned to control levels after 7 days. 125I-BDNF transport from sciatic nerve was elevated with injection either proximal to the lesion or directly into the crush site and after transection of the dorsal roots. All neurotrophin transport was receptor-mediated and consistent with neurotrophin binding to the low-affinity neurotrophin receptor (LNR) or Trk receptors. However, transport of 125I-labeled wheat germ agglutinin also increased 1 day after sciatic nerve crush, showing that increased uptake and transport is a generalized response to injury in DRG sensory neurons. Spinal cord motor neurons also showed increased neurotrophin transport following sciatic nerve injury, although this was maximal after 3 days. The transport of 125I-NGF depended on the expression of LNR by injured motor neurons, as demonstrated by competition experiments with unlabeled neurotrophins. The absence of TrkA in normal motor neurons or after axotomy was confirmed by immunostaining and in situ hybridization. Thus, increased transport of neurotrophic factors after neuronal injury is due to multiple receptor-mediated mechanisms including general increases in axonal transport capacity.  相似文献   

17.
We evaluated changes in F wave from the lower limbs after walking in normals. Twenty-two healthy subjects ranging in age from 24 to 74 years (mean 40.2 SD 15.2) were investigated. The peroneal nerve was examined in 16 subjects and the posterior tibial nerve in 22 subjects on the dominant side. F waves were evaluated at rest and 1 minute and 10 minutes after effort testing consisting in prolonged walking for 15 minutes. F wave minimum, maximum and mean latencies, chronodispersion, duration, persistence and amplitude were evaluated. Only chronodispersion showed a significant decrease for both the peroneal and tibial nerve (p < 0.05) after walking. Moreover we evaluated the F wave after effort in five patients affected by neurogenic claudication: three patients presented a further slowing of proximal conduction, while two patients exhibited a transitory conduction block. In conclusion, F wave changes observed in dynamic conditions in normals probably reflect a synchronization of motorneuron firing requiring a certain amount of descending facilitation. On the other hand, the marked F wave changes after effort observed in patients increase the sensitivity of this method in the clinical setting and may provide insights into the pathophysiologic basis of neurogenic claudication.  相似文献   

18.
We analyzed the M wave and torque after repetitive activation and recovery of the human soleus muscle in individuals with spinal cord injury. Fifteen individuals with complete paralysis had the tibial nerve activated for 330 ms every second with a 20-Hz train. The M wave and torque were analyzed before fatigue, immediately after fatigue, and during recovery. The torque and three M-wave measurements (amplitude, duration, median frequency) changed significantly after fatigue in the chronic group, but the M-wave area was not changed. The M wave was completely recovered after 5 min of rest, even though the torque remained depressed during recovery. The M-wave changes appeared to contribute minimally to the reduced torque in individuals with chronic paralysis. The disassociation in the M-wave-torque relationship during fatigue and recovery suggests, that electrical stimulation under electromyography control is not an ideal method to optimize torque in paralyzed muscle.  相似文献   

19.
Three patients exhibited variable weakness of toe extensors after trivial injuries. The first patient suffered an acute, partial anterior compartment syndrome during a prolonged motorbike ride; the second a traction injury of the deep peroneal nerve while slipping during a racquetball game. The third patient developed a compression injury of the peroneal nerve on the basis of a generalized demyelinating polyneuropathy. The major clues for diagnosis and management came from electromyographic (EMG) examination.  相似文献   

20.
Partial nerve injury is more likely to cause neuropathic pain than complete nerve injury. We have compared the changes in neuropeptide expression in primary sensory neurons which follow complete and partial injuries to determine if these might be involved. Since more neurons are damaged by complete injury, we expected that complete sciatic nerve injury would simply cause greater increases in neuropeptide Y and vasoactive intestinal peptide than partial injury. We examined neuropeptide Y and vasoactive intestinal peptide immunoreactivities in L4 and L5 dorsal root ganglia, the dorsal horn of L4-L5 spinal cord, and the gracile nuclei of rats killed 14 days after unilateral complete sciatic nerve transection, partial sciatic nerve transection and chronic constriction injury of the sciatic nerves. In all three groups of rats, neuropeptide Y- and vasoactive intestinal peptide-immunoreactive neurons were increased in the ipsilateral L4 and L5 dorsal root ganglion when compared with the contralateral side. Most neuropeptide Y-immunoreactive neurons were of medium and large size, but a few were small. Neuropeptide Y-immunoreactive axonal fibers were increased from laminae I to IV, and vasoactive intestinal peptide-immunoreactive axonal fibers were increased in laminae I and II, of the ipsilateral dorsal horn of L4-L5 spinal cord. The increases of neuropeptide Y and vasoactive intestinal peptide immunoreactivities in the dorsal horn were similar among the three groups. However, only after constriction injury were some vasoactive intestinal peptide-immunoreactive neurons seen in the deeper laminae of the ipsilateral dorsal horn. Robust neuropeptide Y-immunoreactive axonal fibers and some neuropeptide Y-immunoreactive cells were seen in the ipsilateral gracile nuclei of all three groups of animals, but neuropeptide Y-immunoreactive cells were more prominent after constriction injury. Contrary to our expectations, partial and complete sciatic nerve injuries induced similar increases in neuropeptide Y and vasoactive intestinal peptide in lumbar dorsal root ganglion neurons and their central projections in the dorsal horn and the gracile nuclei two weeks after injury. Some neurons whose axons were spared by partial injury may also increase neuropeptide Y or vasoactive intestinal peptide expression. Altered neuropeptide release from these functional sensory neurons may play a role in neuropathic pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号