首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of insulin on the rates of glucose disposal were studied in soleus muscles isolated from hyper- or hypothyroid rats. Treatment with triiodothyronine for 5 or 10 days decreased the sensitivity of glycogen synthesis but increased the sensitivity of lactate formation to insulin. The sensitivity of 3-O methylglucose to insulin was increased only after 10 days of treatment and was accompanied by an increase in the sensitivity of 2-deoxyglucose phosphorylation; however, 2-deoxyglucose and glucose 6-phosphate in response to insulin remained unaltered. In hypothyroidism, insulin-stimulated rates of 3-O-methylglucose transport and 2-deoxyglucose phosphorylation were decreased; however, at basal levels of insulin, 3-O-methylglucose transport was increased, while 2-deoxyglucose phosphorylation was normal. In these muscles, the sensitivity of lactate formation to insulin was decreased; this defect was improved after incubation of the muscles with prostaglandin E2. The results suggest: (a) in hyperthyroidism, insulin-stimulated rates of glucose utilization in muscle to form lactate are increased mainly because of a decrease in glycogen synthesis; when hyperthyroidism progresses in severity, increases in the sensitivity of glucose transport to insulin and in the activity of hexokinase may also be involved; (b) in hypothyroidism, the decrease in insulin-stimulated rates of glucose utilization is caused by decreased rates of glycolysis; (c) prostaglandins may be involved in the changes in sensitivity of glucose utilization to insulin observed in muscle in altered thyroid states.  相似文献   

2.
Complete spinal cord lesion leads to profound metabolic abnormalities and striking changes in muscle morphology. Here we assess the effects of electrically stimulated leg cycling (ESLC) on whole body insulin sensitivity, skeletal muscle glucose metabolism, and muscle fiber morphology in five tetraplegic subjects with complete C5-C7 lesions. Physical training (seven ESLC sessions/wk for 8 wk) increased whole body insulin-stimulated glucose uptake by 33+/-13%, concomitant with a 2.1-fold increase in insulin-stimulated (100 microU/ml) 3-O-methylglucose transport in isolated vastus lateralis muscle. Physical training led to a marked increase in protein expression of GLUT4 (378+/-85%), glycogen synthase (526+/-146%), and hexokinase II (204+/-47%) in vastus lateralis muscle, whereas phosphofructokinase expression (282+/-97%) was not significantly changed. Hexokinase II activity was significantly increased, whereas activity of phosphofructokinase, glycogen synthase, and citrate synthase was not changed after training. Muscle fiber type distribution and fiber area were markedly altered compared to able-bodied subjects before ESLC training, with no change noted in either parameter after ECSL training. In conclusion, muscle contraction improves insulin action on whole body and cellular glucose uptake in cervical cord-injured persons through a major increase in protein expression of key genes involved in the regulation of glucose metabolism. Furthermore, improvements in insulin action on glucose metabolism are independent of changes in muscle fiber type distribution.  相似文献   

3.
Overexpression of the human GLUT1 glucose transporter protein in skeletal muscle of transgenic mice results in large increases in basal glucose transport and metabolism, but impaired stimulation of glucose transport by insulin, contractions, or hypoxia (Gulve, E. A., Ren, J.-M., Marshall, B. A., Gao, J., Hansen, P. A., Holloszy, J. O. , and Mueckler, M. (1994) J. Biol. Chem. 269, 18366-18370). This study examined the relationship between glucose transport and cell-surface glucose transporter content in isolated skeletal muscle from wild-type and GLUT1-overexpressing mice using 2-deoxyglucose, 3-O-methylglucose, and the 2-N-[4-(1-azi-2,2, 2-trifluoroethyl)benzoyl]-1,3-bis(D-mannos-4-yloxy)-2-propyl amine exofacial photolabeling technique. Insulin (2 milliunits/ml) stimulated a 3-fold increase in 2-deoxyglucose uptake in extensor digitorum longus muscles of control mice (0.47 +/- 0.07 micromol/ml/20 min in basal muscle versus 1.44 micromol/ml/20 min in insulin-stimulated muscle; mean +/- S.E.). Insulin failed to increase 2-deoxyglucose uptake above basal rates in muscles overexpressing GLUT1 (4.00 +/- 0.40 micromol/ml/20 min in basal muscle versus 3.96 +/- 0.37 micromol/ml/20 min in insulin-stimulated muscle). A similar lack of insulin stimulation in muscles overexpressing GLUT1 was observed using 3-O-methylglucose. However, the magnitude of the insulin-stimulated increase in cell-surface GLUT4 photolabeling was nearly identical (approximately 3-fold) in wild-type and GLUT1-overexpressing muscles. This apparently normal insulin-stimulated translocation of GLUT4 in GLUT1-overexpressing muscle was confirmed by immunoelectron microscopy. Our findings suggest that GLUT4 activity at the plasma membrane can be dissociated from the plasma membrane content of GLUT4 molecules and thus suggest that the intrinsic activity of GLUT4 is subject to regulation.  相似文献   

4.
The effects of the diuretic furosemide on the sensitivity of glucose disposal to insulin were investigated in rat soleus muscle in vitro. At basal levels of insulin, the rates of 3-O-methylglucose transport, 2-deoxyglucose phosphorylation and lactate formation were not affected significantly by furosemide (0.5 mmol/l). However, furosemide significantly decreased these rates at physiological and maximal levels of insulin. The contents of 2-deoxyglucose and glucose 6-phosphate in the presence of furosemide were not significantly different from those in control muscles at all levels of insulin studied. It is concluded that furosemide decreases the sensitivity of glucose utilization to insulin in skeletal muscle by directly inhibiting the glucose transport process.  相似文献   

5.
Effects of 24-h and 48-h fasting on maximal insulin-stimulated whole-body and muscle glucose uptake, glycogen synthesis, and glycolysis were studied in conscious rats by combining the glucose clamp technique with tracer methods. Fasting decreased body weight and basal plasma glucose, plasma insulin, hepatic glucose output, and glucose clearance (P < 0.05 for all). However, maximal insulin-stimulated whole-body glucose uptake, normalized to body weight, was almost identical in fed, 24-h fasted, and 48-h fasted rats (191 +/- 8, 185 +/- 14, and 182 +/- 5 mumol.kg-1.min-1, respectively; P > 0.7). Similarly, rates of insulin-stimulated glucose uptake by four different skeletal muscles, estimated by the 2-deoxyglucose injection technique, were not different among the three groups. In contrast to glucose uptake, insulin-stimulated whole-body glycolysis was decreased significantly after fasting (36% after 48 h fasting; P < 0.05), whereas insulin-stimulated whole-body glycogen synthesis was increased (44% after 48 h fasting; P < 0.05). In fed rats, glycolysis was the major pathway for glucose metabolism during hyperinsulinemia, accounting for 60 +/- 5% of glucose uptake. This fraction was decreased significantly by fasting (P < 0.01), so that after a 48-h fast, glycolysis accounted for only 40 +/- 3% of insulin-stimulated glucose uptake and glycogen synthesis became predominant pathway, accounting for 60 +/- 3% of whole-body glucose utilization. Whole-body patterns of glucose metabolism during hyperinsulinemia were paralleled by glucose metabolism in individual muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To elucidate cellular mechanisms of insulin resistance induced by excess dietary fat, we studied conscious chronically high-fat-fed (HFF) and control chow diet-fed rats during euglycemic-hyperinsulinemic (560 pmol/l plasma insulin) clamps. Compared with chow diet feeding, fat feeding significantly impaired insulin action (reduced whole body glucose disposal rate, reduced skeletal muscle glucose metabolism, and decreased insulin suppressibility of hepatic glucose production [HGP]). In HFF rats, hyperinsulinemia significantly suppressed circulating free fatty acids but not the intracellular availability of fatty acid in skeletal muscle (long chain fatty acyl-CoA esters remained at 230% above control levels). In HFF animals, acute blockade of beta-oxidation using etomoxir increased insulin-stimulated muscle glucose uptake, via a selective increase in the component directed to glycolysis, but did not reverse the defect in net glycogen synthesis or glycogen synthase. In clamp HFF animals, etomoxir did not significantly alter the reduced ability of insulin to suppress HGP, but induced substantial depletion of hepatic glycogen content. This implied that gluconeogenesis was reduced by inhibition of hepatic fatty acid oxidation and that an alternative mechanism was involved in the elevated HGP in HFF rats. Evidence was then obtained suggesting that this involves a reduction in hepatic glucokinase (GK) activity and an inability of insulin to acutely lower glucose-6-phosphatase (G-6-Pase) activity. Overall, a 76% increase in the activity ratio G-6-Pase/GK was observed, which would favor net hepatic glucose release and elevated HGP in HFF rats. Thus in the insulin-resistant HFF rat 1) acute hyperinsulinemia fails to quench elevated muscle and liver lipid availability, 2) elevated lipid oxidation opposes insulin stimulation of muscle glucose oxidation (perhaps via the glucose-fatty acid cycle) and suppression of hepatic gluconeogenesis, and 3) mechanisms of impaired insulin-stimulated glucose storage and HGP suppressibility are not dependent on concomitant lipid oxidation; in the case of HGP we provide evidence for pivotal involvement of G-6-Pase and GK in the regulation of HGP by insulin, independent of the glucose source.  相似文献   

7.
1. The present study examines the effect of leptin on glucose transport and metabolism in incubated soleus muscle from male lean albino rats. 2. Insulin (100 microU/ml) increased glucose uptake by twofold while the leptin group (100 nmol/l) reached 75% of the insulin response after 1 hr of incubation. However, leptin did not potentiate the insulin effect on glucose uptake in soleus muscle. 3. Leptin elicited a significant increase (27.7%) in total lactate production, accompanied by a three-fold increment in glycogen synthesis from [U-14C]D-glucose. 4. Insulin raised glycogen synthesis by sixfold. The leptin plus insulin group increased glycogen synthesis by eightfold, which is equivalent to the sum of the separated leptin and insulin groups. 5. Leptin per se exerts an insulin-like effect stimulating glucose uptake, glycogen synthesis, and lactate formation and also seems to potentiate the effect of insulin on glucose incorporation into glycogen in incubated soleus muscle.  相似文献   

8.
1. The direct short-term effects of troglitazone on parameters of glucose metabolism were investigated in rat soleus muscle strips. 2. In muscle strips from Sprague-Dawley rats, troglitazone (3.25 micromol l(-1)) increased basal and insulin-stimulated glucose transport by 24% and 41%, respectively (P<0.01 each). 3. In the presence of 5 nmol l(-1) insulin, stimulation of glucose transport by 3.25 micromol l(-1) troglitazone was accompanied by a 36% decrease in glycogen synthesis, while glycolysis was increased (112% increase in lactate production) suggesting a catabolic response of intracellular glucose handling. 4. Whereas insulin retained its stimulant effect on [3H]-2-deoxy-glucose transport in hypoxia-stimulated muscle (by 44%; c.p.m. mg(-1) h(-1): 852+/-77 vs 1229+/-75, P<0.01), 3.25 micromol l(-1) troglitazone failed to increase glucose transport under hypoxic conditions (789+/-40 vs 815+/-28, NS) suggesting that hypoxia and troglitazone address a similar, non-insulin-like mechanism. 5. No differences between troglitazone and hypoxia were identified in respective interactions with insulin. 6. Troglitazone acutely stimulated muscle glucose metabolism in a hypoxia/contraction-like manner, but it remains to be elucidated whether this contributes to the long-term antidiabetic and insulin enhancing potential in vivo or is to be regarded as an independent pharmacological effect.  相似文献   

9.
To study the interaction between insulin receptor (IR) and insulin-like growth factor-I (IGF-I) receptor (IGF-IR) tyrosine kinases, we examined IGF-I action in Rat-1 cells expressing a naturally occurring tyrosine kinase-deficient mutant IR (Asp 1048 IR). IGF-I normally stimulated receptor autophosphorylation, IRS-I phosphorylation, and glycogen synthesis in cells expressing Asp 1048 IR. However, the Asp 1048 IR inhibited IGF-I-stimulated thymidine uptake by 45% to 52% and amino acid uptake (aminoisobutyric acid [AIB]) by 58% in Asp 1048 IR cells. Furthermore, IGF-I-stimulated tyrosine kinase activity toward synthetic polymers, Shc phosphorylation, and mitogen-activated protein (MAP) kinase activity was inhibited. The inhibition of mitogenesis and AIB uptake was restored with the amelioration of the impaired tyrosine kinase activity and Shc phosphorylation by the introduction of abundant wild-type IGF-IR in Asp 1048 IR cells. These results suggest that the Asp 1048 IR causes a dominant negative effect on IGF-IR in transmitting signals to Shc and MAP kinase activation, which leads to decreased IGF-I-stimulated DNA synthesis, and that the kinase-defective insulin receptor does not affect IGF-I-stimulated IRS-I phosphorylation, which leads to the normal IGF-I-stimulated glycogen synthesis.  相似文献   

10.
The OB protein, also known as leptin, is secreted by adipose tissue, circulates in the blood, probably bound to a family of binding proteins, and acts on central neural networks regulating ingestive behavior and energy balance. The two forms of leptin receptors (long and short forms) have been identified in various peripheral tissues, a fact that makes them possible target sites for a direct action of leptin. It has been shown that the OB protein interferes with insulin secretion from pancreatic islets, reduces insulin-stimulated glucose transport in adipocytes, and increases glucose transport, glycogen synthesis and fatty acid oxidation in skeletal muscle. Under normoglycemic and normoinsulinemic conditions, leptin seems to shift the flux of metabolites from adipose tissue to skeletal muscle. This may function as a peripheral mechanism that helps control body weight and prevents obesity. Data that substantiate this hypothesis are presented in this review.  相似文献   

11.
Adenosine in the extracellular space modulates stimulated glucose transport in striated muscle. In the heart and in adipocytes, adenosine potentiates insulin-stimulated glucose transport. There is controversy regarding the effect of adenosine in skeletal muscle, with reports of both an inhibitory effect and no effect, on insulin-stimulated glucose transport. We found that, in rat epitrochlearis and soleus muscles, removing adenosine with adenosine deaminase or blocking its action with the adenosine receptor blocker CPDPX markedly reduces the responsiveness of glucose transport to stimulation by 1) insulin alone, 2) contractions alone, and 3) insulin and contractions in combination. Measurement of the increase in GLUT4 at the cell surface in response to a maximally effective insulin stimulus in the epitrochlearis muscle, using the exofacial label ATB-[3H]BMPA, showed that adenosine deaminase treatment markedly reduces cell-surface GLUT4 labeling. The reduction in cell-surface GLUT4 labeling was similar in magnitude to the decrease in maximally insulin-stimulated glucose transport activity in adenosine deaminase-treated muscles. These results show that adenosine potentiates insulin- and contraction-stimulated glucose transport in skeletal muscle by enhancing the increase in GLUT4 at the cell surface and raise the possibility that decreased adenosine production or action could play a causative role in insulin resistance.  相似文献   

12.
The ob gene product, leptin, causes significant and dose-dependent inhibition of basal and insulin-stimulated glycogen synthesis in isolated soleus muscle from ob/ob mice, and a smaller, non-significant inhibition in muscle from wild-type mice. Leptin had no inhibitory effect on glycogen synthesis in soleus muscle from the diabetic (db/db) mice, which lack the functional leptin receptor. The full-length leptin receptor (Ob-Rb), is expressed in soleus muscle of both ob/ob and wild-type mice, however with no detectable differences in expression level. These results suggest that hyperleptinaemia may attenuate insulin action on glucose storage in skeletal muscle.  相似文献   

13.
Endurance exercise training induces a rapid increase in the GLUT-4 isoform of the glucose transporter in muscle. In fasted rats, insulin-stimulated muscle glucose transport is increased in proportion to the increase in GLUT-4. There is evidence that high muscle glycogen may decrease insulin-stimulated glucose transport. This study was undertaken to determine whether glycogen supercompensation interferes with the increase in glucose transport associated with an exercise-induced increase in GLUT-4. Rats were trained by means of swimming for 6 h/day for 2 days. Rats fasted overnight after the last exercise bout had an approximately twofold increase in epitrochlearis muscle GLUT-4 and an associated approximately twofold increase in maximally insulin-stimulated glucose transport activity. Epitrochlearis muscles of rats fed rodent chow after exercise were glycogen supercompensated (86.4 +/- 4.8 micromol/g wet wt) and showed no significant increase in maximally insulin-stimulated glucose transport above the sedentary control value despite an approximately twofold increase in GLUT-4. Fasting resulted in higher basal muscle glucose transport rates in both sedentary and trained rats but did not significantly increase maximally insulin-stimulated transport in the sedentary group. We conclude that carbohydrate feeding that results in muscle glycogen supercompensation prevents the increase in maximally insulin-stimulated glucose transport associated with an exercise training-induced increase in muscle GLUT-4.  相似文献   

14.
Benzyl succinate inhibited insulin binding and tyrosine receptor kinase in a concentration-dependent manner in the partially purified insulin receptor preparation from rat skeletal muscle. Benzyl succinate lowered the apparent number of high-affinity insulin binding sites. We have made use of the inhibitory effect of benzyl succinate to investigate the possible presence of spare high-affinity insulin receptors in muscle. Benzyl succinate inhibited the effect of a supramaximal concentration of insulin on 3-O-methylglucose uptake, 2-(methylamino)isobutyric acid uptake and lactate production by the incubated muscle. Furthermore, the inhibitory effect of benzyl succinate on insulin binding in vitro closely correlated with its inhibitory effect on insulin action in vivo. These findings suggest the absence of spare high-affinity insulin receptors in skeletal muscle. In contrast to data obtained in skeletal muscle, benzyl succinate did not affect the maximally insulin-stimulated glucose transport, although it caused a marked decrease in insulin sensitivity in isolated rat adipocytes, for which the existence of spare insulin receptors is well documented.  相似文献   

15.
The mechanism of insulin resistance in obesity was examined in ten obese (BMI 33 +/- 1 kg/m2) and nine lean (BMI 22 +/- 1 kg/m2) Caucasian women during a hyperglycemic-hyperinsulinemic clamp using 13C and 31P nuclear magnetic resonance (NMR) spectroscopy to measure rates of muscle glycogen synthesis and intramuscular glucose-6-phosphate (G-6-P) concentrations. Under similar steady-state plasma concentrations of glucose (approximately 11 mmol/l) and insulin (approximately 340 pmol/l), rates of muscle glycogen synthesis were reduced approximately 70% in the obese subjects (52 +/- 8 micromol/[l muscle-min]) as compared with the rates in the lean subjects (176 +/- 22 micromol/[l muscle-min]; P < 0.0001). Basal concentrations of intramuscular G-6-P were similar in the obese and lean subjects; but during the clamp, G-6-P failed to increase in the obese group (deltaG-6-P obese 0.044 +/- 0.011 vs. lean 0.117 +/- 0.011 mmol/l muscle; P < 0.001), reflecting decreased muscle glucose transport and/or phosphorylation activity. We conclude that insulin resistance in obesity can be mostly attributed to impairment of insulin-stimulated muscle glycogen synthesis due to a defect in glucose transport and/or phosphorylation activity.  相似文献   

16.
Elevated blood glucose concentrations result in increased intracellular levels of glucose 6-phosphate in liver, skeletal muscle, and adipose tissue. In liver, blood glucose concentrations are the main factor in control of the synthesis of glycogen; insulin has only a potentiating effect. In skeletal muscle and adipocytes, glucose alone has little effect on the activity of glycogen synthase, the limiting enzyme in glycogen synthesis. However, insulin released as a result of elevated blood glucose stimulates the translocation of specific glucose transporters to the cell membrane, increases the uptake of glucose, and causes the covalent, dephosphorylation-mediated activation of glycogen synthase. We present evidence that elevated intracellular contents of glucose 6-phosphate provoke the activation of glycogen synthase in liver, muscle, and adipose tissue. In addition, glucose 6-phosphate may inhibit the phosphorylation of glycogen synthase by cyclic AMP-stimulated protein kinase. We show that the stimulated glucose uptake and phosphorylation appear to play a major role in the control by insulin of the enzymes involved in glycogen synthesis.  相似文献   

17.
Experiments described here show that in vivo glucose uptake is impaired in mice given 30 micrograms leptin by intraperitoneal injection 2 hours before an oral glucose tolerance test (GTT). When mice were infused for 7 days with 10 micrograms/day leptin, the 4-fold increase in circulating leptin caused a transient hypophagia, a sustained weight loss and significantly inhibited insulin release in response to an oral GTT. Adipocytes from these mice were not insulin responsive whereas insulin-stimulated muscle and liver glycogen synthesis were increased. In contrast, leptin added to 2 hour in vitro incubations had an insulin-like effect on muscle glucose utilization and augmented insulin stimulation of adipocyte lipid synthesis. Thus, normal mice treated chronically with leptin develop tissue specific changes in insulin sensitivity and compensate for inhibition of glucose-stimulated insulin release. The contrasting response to acute leptin exposure suggests these changes are not a direct effect of the protein.  相似文献   

18.
In rat adipocytes, GLP-1 (7-36) amide induced an increment in 2-deoxy-glucose uptake, which was additive to that of insulin. Furthermore, in rat fat, GLP-1 (7-36) amide provoked a rise in glycogen synthesis, glucose oxidation and utilization and lipogenesis, the increments being lower than those obtained with insulin. These data support the idea that GLP-1 exerts insulin-like effects on glucose metabolism in rat adipose tissue, as it does in rat hepatocytes and skeletal muscle, although with a lower potency than that of insulin.  相似文献   

19.
Insulin resistance is a characteristic feature in recipients of a pancreas transplant, but the relative contribution of the liver and peripheral tissues to this abnormality within a spanning range of insulin concentrations is unknown. To assess the impact of insulin action on glucose metabolism after pancreas transplantation, a euglycemic-hyperinsulinemic clamp with sequential insulin infusions (5, 40, and 200 mU.m-2.min-1 for 120 min each), combined with isotopic determinations of the rates of hepatic glucose production and extrahepatic glucose uptake, indirect calorimetry, and measurements of glycogen synthase and hexokinase activities in vastus lateralis muscle, were performed in six pancreas-kidney transplant recipients (Px group) and compared with those performed in six nondiabetic kidney transplant recipients with similar immunosuppression (Kx group) and six nondiabetic control subjects. The overall effects of insulin on whole-body glucose metabolism, determined as the glucose infusion rates versus the corresponding steady-state serum insulin concentrations, demonstrated a rightward shift in the dose-response curves of the transplanted groups compared with those of normal subjects. The dose-response curve for glucose disposal rates (Rd) was shifted to the right in the Px and Kx groups, and the maximal glucose disposal rate was reduced by 40% in the Px group (11.7 +/- 1.1 mg.kg-1 fat-free mass.min-1) and 30% in the Kx group (13.9 +/- 1.2 mg.kg-1 fat-free mass.min-1) compared with that in control subjects (19.1 +/- 2.2 mg.kg-1 fat-free mass.min-1) (P < 0.05). The dose-response curve for suppression of hepatic glucose output rates was similar at increasing hepatic sinusoidal insulin concentrations. Glucose oxidation rates were similar in all groups, whereas nonoxidative glucose rates were reduced by 50% in the Px group and by 30% in the Kx group compared with those in the control group (P < 0.05). In the Px group, an impaired activation of the fractional velocity and absent decrease in the half-maximal stimulation of muscle glycogen synthase occurred during the insulin infusion. However, this finding could only explain in part the degree of impairment in nonoxidative glucose metabolism. No differences were found in total hexokinase activity in muscle between normal subjects and the transplant groups at basal insulinemia or after insulin stimulation. During hyperinsulinemia, glucagon and nonesterified fatty acids were not suppressed as much in the transplanted groups as they were in normal control subjects (P < 0.05). In conclusion, pancreas transplantation causes impaired peripheral action of insulin as compared with that in normal subjects and kidney transplant recipients. The main course of insulin resistance in the two transplant groups is explained by the immunosuppressive treatment, but the augmented insulin resistance in pancreas transplant recipients could partly be explained by the chronic peripheral hyperinsulinemia. The principal site of insulin resistance was a reduced insulin-stimulated nonoxidative glucose metabolism of peripheral tissues, which resulted in decreased capacity to store glucose as glycogen. The impaired peripheral insulin action could only partly be explained by a reduced activation of the glycogen synthase enzyme in skeletal muscle.  相似文献   

20.
Recent evidence indicates that inflammatory cytokines are involved in changes of blood glucose concentrations and hepatic glucose metabolism in infectious diseases, including sepsis. However, little is known regarding how cytokines interact with glucoregulatory hormones such as insulin. The objective of the present study is to investigate if and how cytokines influence insulin-stimulated glycogen metabolism in the liver. Interleukin 1beta (IL-1beta) and interleukin 6 (IL-6) markedly inhibited the increase of glycogen deposition stimulated by insulin in primary rat hepatocyte cultures; however, tumor necrosis factor alpha had no effect. Labeling experiments revealed that both cytokines counteracted insulin action by decreasing [14C]-glucose incorporation into glycogen and by increasing [14C]-glycogen degradation. Furthermore, it was discovered that IL-1beta and IL-6 inhibited glycogen synthase activity and, in contrast, accelerated glycogen phosphorylase activity. In experiments with kinase inhibitors, serine/threonine kinase inhibitor K252a blocked IL-1beta- and IL-6-induced inhibitions of glycogen deposition, as well as glycogen synthase activity, whereas another kinase inhibitor staurosporine blocked only IL-6-induced inhibition. Tyrosine kinase inhibitor herbimycin A blocked only IL-1beta-induced inhibition. These results indicate that IL-1beta and IL-6 regulate insulin-stimulated glycogen synthesis through different pathways involving protein phosphorylation in hepatocytes. They may mediate the change of hepatic glucose metabolism under pathological and even physiological conditions by modifying insulin action in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号