首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
“J+E”型通风方式在王庄煤矿的实践   总被引:1,自引:0,他引:1  
武文庆  王建斌 《煤》2008,17(1):51-51,58
"J+E"型混合通风方式利用关键层免压区理论,采用沿空留巷技术以低成本、低投入在采空区维护出一条专用回风巷道,使工作面回采过程中产生的大量瓦斯经专用回风巷排至采区回风巷,以较小的风量排出大量瓦斯,克服了U型通风一进一回的缺点,有效解决了高瓦斯综放工作面上隅角瓦斯积聚,保证了高产高效工作面的安全生产。  相似文献   

2.
采用"Y"型通风,即两进一回的通风方式,沿采空区沿空留巷实施无煤柱开采技术,降低了巷道掘进率,提高了回采效率,有效地解决了传统的"U"型通风方式无法解决的上隅角瓦斯积聚、通风路径长、风阻高等问题,并将顺槽内机电设备和机械产生的热量通过进风流送入沿空留巷内,大大改善了作业环境,为煤矿安全生产创造了有利条件。  相似文献   

3.
"J+E"型混合通风方式利用关键层免压区理论,采用沿空留巷技术以低成本、低投入,在采空区维护出1条专用回风巷道,使工作面回采过程中产生的大量瓦斯经专用回风巷排至采区回风巷,以较小的风量排出大量瓦斯,克服了U型通风一进一回的缺点,有效解决了高瓦斯综放工作面上隅角瓦斯积聚,保证了高产高效工作面的安全生产。  相似文献   

4.
随着矿井开采的延伸和采煤工作面机械化程度不断提高,采煤工作面"U"型和"U+L"型通风方式中,工作面的上隅角及回风巷瓦斯管理难度大幅度增加,制约着煤矿的安全生产。采煤工作面采用无煤柱开采沿空留巷布置,结合"Y"型通风方式,合理调配风量并进行综合瓦斯抽放,实践证明能从根本上解决上隅角及回风瓦斯管理困难的问题。  相似文献   

5.
为了从根本上解决寸草塔二矿上隅角瓦斯超限的问题,通过分析研究偏"Y"型通风方式下采煤工作面上隅角瓦斯积聚超限的原因及瓦斯运移规律,有针对性地提出了治理工作面上隅角瓦斯积聚超限的具体方法、措施,有效地解决了寸草塔二矿上隅角瓦斯积聚及超限的问题。  相似文献   

6.
“Y”型通风瓦斯治理技术在祁东煤矿的应用   总被引:2,自引:1,他引:1  
张朝举  王飞 《煤矿安全》2011,42(6):95-97
我国绝大多数矿井的采煤工作面采用"U"型通风,该通风方式特有的漏风流态会使采空区回风隅角大量积聚瓦斯,影响工作面生产安全。而采用"两进一回"Y"型通风系统,使通过工作面的风量相对减少,有助于防止工作面煤尘飞扬,改善工作面环境,减少采空区漏风和瓦斯涌出,从而具有防止工作面瓦斯积聚的作用。详细介绍了祁东煤矿"Y"型通风的工艺系统,提出了沿空留巷倾向穿层钻孔卸压瓦斯抽采方法,穿层钻孔抽放纯量在13 m3/min左右,割煤时回风流瓦斯浓度在0.40%左右,上隅角瓦斯浓度基本上在0.8%以下,有效地保证了矿井工作面的回采安全。  相似文献   

7.
针对回采工作面U型通风方式容易造成上隅角瓦斯浓度超限的问题,提出Y型通风方式,建立采空区的瓦斯流动控制方程和系统物理模型。并对采空区瓦斯浓度进行了数值模拟,模拟结果显示Y型通风方式能拦截采空区瓦斯进入工作面上隅角及回风巷,有效避免了工作面上隅角瓦斯的积聚。  相似文献   

8.
通过利用沿空留巷超前支护方法中"两进一回"的"Y"型通风方式,并对沿空留巷"两进一回"的"Y"型通风方式回采过程中留巷支护、瓦斯管理、监测监控等管理难点制定措施的实践。解决了综采煤柱回收工作面通风系统复杂、供风量不足、瓦斯管理困难等问题,消除安全隐患,实现了安全回采。  相似文献   

9.
下沟矿403采区首采301工作面采用"U"型通风方式,采空区瓦斯涌出到工作面比例较大,易造成上隅角瓦斯局部积聚。针对这一问题,提出采用均压通风技术以治理上隅角瓦斯,通过实践应用取得良好效果。但在分析工作面瓦斯实测数据发现存在均压通风"平衡点"问题,通过建立301工作面风网解算模型,并通过数值模拟以及数据分析,分析了导致"平衡点"出现的原因,通过现场实践验证,与理论推导结果相近。  相似文献   

10.
高强度综放工作面瓦斯综合治理技术措施   总被引:2,自引:0,他引:2  
综放工作面为U型通风方式,工作面上隅角和上风巷侧部分工作面瓦斯经常严重超限,工作面无法正常生产。通过变U型通风方式为"山"字型通风方式及上隅角瓦斯采用水局扇强力抽排等综合技术措施,很好地解决工作面瓦斯聚积问题。  相似文献   

11.
高瓦斯综采面Y型通风采空区漏风规律研究   总被引:3,自引:0,他引:3  
为了准确划分高瓦斯综采工作面Y型通风模式下的采空区三带分布,该研究基于能位测定、示踪技术、回风流瓦斯浓度变化和束管检测等技术手段,探讨了高瓦斯综采工作面Y型通风模式下三带分布主要影响因素中的漏风规律。结果表明:Y型通风工作面采空区存在大量漏风的可能性,且漏风可基本分为风速急变区、风速缓变区和风速趋零区等3个区域。  相似文献   

12.
王庄煤矿6206综放面采空区瓦斯流场及浓度分布规律研究   总被引:3,自引:0,他引:3  
赵栋  张学博  邓权威 《煤》2009,18(7):1-2,6
利用计算流体力学(CFD)软件Fluent对6206综放面回采不同区段时采空区瓦斯流场及浓度分布进行了数值模拟,得到了"J"型通风条件下的采空区流场及瓦斯运移规律。结果表明,采用"J"型通风系统可减少采空区向上隅角的集中漏风,对有效解决工作面上隅角瓦斯积聚有着重要的作用。  相似文献   

13.
近年来,随着煤矿采掘机械化程度的不断改进,采煤新技术的不断应用,工作面推进速度逐步加快,工作面生产能力也不断提高,但同时出现了一系列亟待解决的问题,其中最为严重的是瓦斯问题。通过在常村煤矿S5-8综采工作面试用新型"Y+L"型"两进一回"通风方式,在瓦斯治理方面进行了有益探索并取得了较好效果。  相似文献   

14.
易燃厚煤层综放面特大瓦斯涌出综合治理技术   总被引:4,自引:1,他引:4  
应用综放工作面通风理论和瓦斯涌出与运移规律,结合大水头煤矿高瓦斯易燃特厚煤层综采放顶煤开采特点,通过实例分析,论证了新型通风技术(B型)在特大瓦斯涌出综放工作面开采中应用的技术合理性、安全可靠性、经济高效性。  相似文献   

15.
针对高瓦斯厚煤层高强度开采条件下“三进两回”型通风系统回风隅角瓦斯治理的难题,通过对矿井回采工作面通风方式进行优化,使工作面形成偏“Y”型的通风方式,并与大直径水平钻孔施工工艺相结合,提出了大直径水平钻孔桥接采空区抽采瓦斯技术,应用于保德煤矿综采放顶煤回采工作面的采空区瓦斯抽采。结果表明:偏“Y”型通风方式可减少工作面巷道掘进工程量,缩短准备周期,为瓦斯抽采创造了良好的时空条件;大直径水平钻孔桥接采空区抽采瓦斯技术的应用效果明显,可连续、高效实施采空区的密闭抽采,有效控制采空区瓦斯涌出强度;大直径水平钻孔桥接采空区抽采瓦斯技术能够实现对抽采负压的有效控制,有利于进一步提高采空区瓦斯抽采效果,并且其抽采支管可回收,可降低矿井瓦斯治理的成本。  相似文献   

16.
李智峰  刘佳佳  王丹 《煤》2012,(10):1-3,29
针对综采面U型通风上隅角瓦斯经常超限的严重问题,将工作面的通风方式调整为W型通风,分别对综采面U型通风和W型通风条件下采空区瓦斯分布进行了数值模拟研究,得出两种不同通风方式下的采空区瓦斯分布规律。研究结果表明:工作面选用W型方式,在相同的条件下,能更有效地解决上隅角瓦斯超限问题,最后,通过将数值模拟风速值与理论计算风速值进行对比,模拟结果与理论计算结果非常接近,验证了数值模拟的正确性,为综采工作面瓦斯的防治提供了一定的理论依据。  相似文献   

17.
陈占全  杨伟  魏强 《煤炭技术》2021,40(2):117-119
针对龙滩矿井综采工作面W型通风系统,易造成回采工作面中隅角瓦斯积聚与超限问题,以龙滩矿井3112南回采工作面为工程研究背景,提出采取主动抽放采空区瓦斯,实施高抽巷瓦斯治理技术,实现了中隅角与回风巷瓦斯不超限,保证了矿井安全生产。  相似文献   

18.
高位“E”巷是在综采工作面风巷内错5m顶板施工一条专用排瓦斯巷。通过高位“E”巷在采空区内部形成低负压通道,改变瓦斯的移动方向,消除了上隅角瓦斯积聚,降低采面回风流瓦斯浓度,保证回采工作面的安全回采。  相似文献   

19.
高瓦斯突出矿井综采工作面瓦斯综合防治技术   总被引:2,自引:0,他引:2  
杨彦群 《煤炭科学技术》2012,40(6):44-45,50
为了控制高瓦斯突出矿井屯兰矿18205综采工作面的瓦斯,以Y型通风系统为基础,底板瓦斯抽采巷瓦斯抽采为主体,配以本煤层顺层瓦斯抽采、上邻近层瓦斯抽采和沿空留巷隔离墙埋管瓦斯抽采等方法进行现场试验。采用上述治理措施后瓦斯抽采率达70%以上,工作面风排瓦斯量仅为5. 93 m3/ min,相对瓦斯涌出量4. 51 m3/ t,分别下降76% 4%和70. 7%,矿井瓦斯治理能力得到了总体提升。  相似文献   

20.
为了提高易燃厚煤层超长孤岛综放工作面在终采和回撤期间的防火安全,根据煤自然发火防治理论和孤岛综放工作面自燃特点,提出了全工作面支架壁后铺设风筒布堵漏防灭火技术,研究了快速回撤工艺,开发出快速装卸平台.现场应用表明,铺风筒布防灭火技术堵漏效果显著,防灭火效果好;快速回撤工艺和快速装卸平台提高了工作面设备回撤速度,使超长孤岛综放工作面在20 d内回撤完毕,为快速封闭赢得了时间,起到了安全防火目的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号