首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A numerical and experimental comparative study of a carbon dioxide trans-critical refrigerating system and a conventional sub-critical refrigerating cycle is presented. Attention is focussed not only on the whole refrigeration cycle, but also on the behaviour of the hermetic reciprocating compressors used in these systems. The comparative cases presented have been specially designed for small cooling capacity units with an evaporation temperature around 0 °C. A detailed numerical simulation model for hermetic reciprocating compressors performance, widely validated under conventional fluid refrigerants, has been extended to numerically obtain the CO2 compressor prototypes behaviour. Two CO2 compressor prototypes working with CO2 have been experimentally tested in a specific unit, specially designed and built to analyse high-pressure single stage vapour compression trans-critical refrigerating equipments. This set-up has allowed validating a detailed numerical simulation code for the thermal and fluid-dynamic behaviour of single stage vapour compression refrigeration system working with CO2 as fluid refrigerant. The numerical results and the experimental data obtained to validate compressors, heat exchangers and whole cycle behaviour have shown a really good agreement. Finally, the numerical and experimental comparison between the carbon dioxide system and the sub-critical conventional cycle has shown the possibility of CO2 as fluid refrigerant under the studied working conditions.  相似文献   

2.
In this work, an unsteady state analysis of the compression cycle of a small hermetic reciprocating compressor for domestic refrigeration was carried out. A specific one-dimensional model of the valves was developed and the mass and energy balances were applied to the refrigerant inside the cylinder to determine the mass, pressure and temperature behaviour and the heat and work transfer through the compression process. This analysis was inserted into a traditional steady state model of the compressor to evaluate the efficiency of the compression cycle and the performance of the compressor unit. The whole simulation code was validated against the experimental measurements carried out on a R134a commercial unit in a wide range of operative conditions: a fair agreement was found between predicted and measured performances. The simulation code can be a useful tool for the analysis, the design and the development of small hermetic reciprocating compressors for domestic refrigeration.  相似文献   

3.
The aim of this paper is the detailed analysis of different well-known thermodynamic efficiencies usually used to characterize hermetic compressors. Attention is focussed on the volumetric efficiency, the isentropic efficiency, and the combined mechanical–electrical efficiency. A procedure is presented to detach these efficiencies into their main components (physical sub-processes) to get deeper insight on the overall behavior.The volumetric efficiency is split into partial efficiencies related to pressure drop and heat transfer effects, supercharging effects, superdischarging effects, leakages, etc. The isentropic efficiency is detached using two different points of view: the work associated to the individual sub-processes (compression, discharge, expansion, suction), and the work associated to the underpressures, overpressures, and between the inlet and outlet mean compressor pressures. Finally, the combined mechanical–electrical efficiency is related to the heat transfer losses/gains, and to the exergy transfers and exergy destroyed.Even though some of the concepts introduced in the paper can be applied to different kinds of compressors, the discussion is specially focussed on hermetic reciprocating compressors. An advanced simulation model developed by the authors has been used to generate data to illustrate the possibilities of the detailed thermodynamic characterization proposed. The criteria developed are useful tools for comparison purposes, to characterize compressors, and to assist designers during the optimization process.  相似文献   

4.
A new model for hermetic reciprocating compressors is presented. This model is able to predict compressor efficiency and volumetric efficiency in terms of a certain number of parameters (10) representing the main sources of losses inside the compressor. The model provides users with helpful information about the way in which the compressor is designed and working.A statistical fitting procedure based on the Monte Carlo method was developed for its adjustment. The model can predict compressor performance at most points with a maximum deviation of 3%.A possible gas condensation on cold spots inside the cylinder during the last part of the compression stroke was also evaluated.  相似文献   

5.
In this experimental investigation five R407C positive displacement hermetic reciprocating compressors, covering different capacities, displacement, stroke-to-bore ratios and number of cylinders, have been characterized using propane as refrigerant by means of a specifically designed characterization test rig. Test results have been systematically compared with their R407C reference performance data to obtain a complete picture on changes on the volumetric efficiency and compressor efficiency amongst others. The compressors used POE oil as lubricant and additional oil circulation rate (OCR) tests at steady state conditions were done to evaluate possible effects and differences to the traditionally used mineral oils.  相似文献   

6.
Numerical simulation of reciprocating compressors is important for the design, development, improvement and optimization of the elements constituting the compressor circuit. In this work, an object-oriented unstructured modular numerical simulation of reciprocating compressors is presented. Pressure correction approach is applied for the resolution of tubes, chambers and compression chambers, while valve dynamics are modelled assuming a spring-mass system having single degree of freedom. The modular approach offers advantages of handling complex circuitry (e.g. parallel paths, multiple compressor chambers, etc.), coupling different simulation models for each element and adaptability to different configurations without changing the program. The code has been verified with some basic tests for assuring asymptotic behaviour to guarantee error free code and physically realistic results. Cases with different compressor configurations and working fluids (R134a, R600a and R744) have also been worked out. Numerical results are compared with experimental data and illustrative cases of multi-stage compression are also presented.  相似文献   

7.
The design of a high-efficiency reciprocating compressor requires an understanding of the interactions between different phenomena occurring inside the compressor. This paper describes a comprehensive simulation approach for hermetic reciprocating compressors including modeling of the electrical motor. The simulation of the compression cycle follows an integral control volume formulation for mass and energy conservation. A thermal model is adopted with steady-state thermal energy balances applied to the compressor components via global thermal conductances. The equivalent circuit method is employed to form a steady-state model of a single-phase induction motor. The coupling between the three models provides the motor slip and mean compressor speed, which are seen to affect the compressor efficiency. The simulation model is validated through comparisons between predictions and measurements of the parameters associated with the compressor efficiency, temperature distribution and motor performance. A parametric analysis is carried out to investigate the dependence of the motor temperature on the input voltage and the results are discussed.  相似文献   

8.
In this paper, a series of compressors with different capacities and geometries working with propane as refrigerant are analyzed in terms of the compressor model developed by [E. Navarro, E. Granryd, J.F. Urchueguía, J.M. Corberán, A phenomenological model for analyzing reciprocating compressors, International Journal of Refrigeration, in this issue, doi:10.1016/j.irefrig.2007.02.006]. The relative influence of the diverse compressor losses is estimated as a function of the operating conditions.In addition, a comparison study between propane and R407C was carried out for one compressor and the observed differences were analyzed in terms of the compressor model. This study was also useful to verify the model's goodness with the aim of predicting the compressor performance with an untested refrigerant.  相似文献   

9.
In a refrigerant compressor, improvement in performance such as reduction of various electrical and mechanical losses, reduction of gas leakage, better lubrication, reduction of suction gas heating etc. can be achieved by maintaining a low temperature rise inside the compressor. Proper selection and location of an internal over load protector relay, estimation of heat transfer coefficient and winding insulation coefficient are also vital in enhancing the performance. In this context it is necessary to understand the temperature distribution inside a compressor for an optimal design. In this paper, a numerical model has been created and a heat transfer analysis for a hermetically sealed reciprocating refrigerant compressor is presented. The temperature distribution inside the compressor has been obtained taking into consideration the various heat sources and sinks and compared with experimental results. The maximum temperature was observed at the rotor which was 427.5 K. The deviation of the predicted rotor temperature from that of experimental value is 5.5% only. A good agreement was found between experimental results and that predicted in the numerical analysis.  相似文献   

10.
The principles of operation and design of the prototype of a novel design of vane compressor with significant advantages over the conventional sliding vane type are described. Its performance is given and compared to that of equivalent commercially available sliding vane and reciprocating compressors used in refrigeration systems. Its volumetric efficiency on average was 3% greater than that of the sliding vane compressor and 23% more than that of the reciprocating machine. The adiabatic efficiency was on average 15% greater than that of the sliding vane and about equal to that of the reciprocating compressor. Owing to its high rotational speed it is more compact than the reciprocating compressor. Since the vanes are rigidly retained about their axis of rotation they cannot chatter as in a sliding vane compressor. It is therefore smooth and quiet in operation and no mechanical faults were encountered in 432 h of operation.  相似文献   

11.
Stepless capacity control technology for reciprocating compressors is a key contributor to energy saving for the petroleum and petrochemical industries. Devices called “unloaders” are utilized to control the capacity of the compressor by forcibly holding the suction valves open during a variable portion of the compression stroke to control the compressor output. This approach can also lead to various faults of the suction valve. This paper describes the simulation and experimental studies of the transient motion of suction valves under stepless capacity control. Beginning with mathematical models for the normal cycle, improved models of a reciprocating compressor under stepless capacity control have been built. A simulation study of the working process of a double-acting reciprocating compressor has been completed. Theoretical formulas for the transient motion of the valve plate under complicated conditions and the dynamic pressure in the cylinder are compared with the experimental results. Based on the above simulations, a finite element analysis of the valve plate and valve seat has been completed. The experiment results showed that the vibration of the compressor cylinder under complicated conditions was consistent with numerical simulation results. Research presented in this paper is significant in providing tools for diagnosing faults in order to optimize the design of reciprocating compressors that utilize a stepless capacity control system.  相似文献   

12.
Modelling of reciprocating and scroll compressors   总被引:1,自引:0,他引:1  
This paper presents simple and thermodynamically realistic models of two types of compressors widely used in domestic heat pumps (reciprocating and scroll compressors). These models calculate the mass flow rate of refrigerant and the power consumption from the knowledge of operating conditions and parameters. Some of these parameters may be found in the technical datasheets of compressors whereas others are determined in such a way that the calculated mass flow rate and electrical power match those given in these datasheets.The two models have been tested on five reciprocating compressors and five scroll compressors. This study has been limited to compressors with a maximum electrical power of 10 kW and for the following operating conditions: evaporating temperatures ranging from −20 to 15 °C and condensing temperatures ranging from 15 to 60 °C.The average discrepancies on mass flow rate and power for reciprocating compressors are 1.10 and 1.69% (for different refrigerants: R134a, R404A, R22, R12 and R407C). For scroll compressors, the average discrepancies on mass flow rate and power are 2.42 and 1.04% (for different refrigerants: R134a, R404A, R407C and R22).  相似文献   

13.
Theoretical and experimental studies of small hermetic rotary compressors for room air conditioners are reported. Comparing rotary and reciprocating compressors from the viewpoint of efficiency, the rotary compressor has a disadvantage of higher friction loss because the sliding surfaces in the compression chamber increase in number, however it has the following three significant features: volumetric efficiency is high; valve loss is low; since suction, compression and discharge are performed simultaneously, suction velocity and discharge velocity become approximately one half. Therefore the efficiency of the rotary compressor is higher than that of the reciprocating compressor.  相似文献   

14.
Theoretical and experimental studies of small hermetic rotary compressors for room air conditioners are reported. Comparing rotary and reciprocating compressors from the viewpoint of efficiency, the rotary compressor has a disadvantage of higher friction loss because the sliding surfaces in the compression chamber increase in number, however it has the following three significant features: volumetric efficiency is high; valve loss is low; since suction, compression and discharge are performed simultaneously, suction velocity and discharge velocity become approximately one half. Therefore the efficiency of the rotary compressor is higher than that of the reciprocating compressor.  相似文献   

15.
This paper is the second part of our study on the advanced energy storage system using H2O–LiBr as working fluid. In the first part, the system working principle has been introduced, and the system dynamic models in the operation process have also been developed. Based on the previous research, this paper focuses on the numerical simulation to investigate the system dynamic characteristics and performances when it works to provide combined air-conditioning and hot water supplying for a hotel located near by Yangzi River in China. The system operation conditions were set as follows: the outdoor temperature was between 29 °C and 38 °C, the maximum air-conditioning load was 1450 kW, the total air-conditioning capacity was 19,890 kWh and the 50 °C hot water capacity for showering was 20 tons which needed heat about 721 kWh on a given day. Under these conditions, the system operation characteristics were simulated under the full- and partial-storage strategies. The simulation results predicted the dynamic characteristics and performances of the system, including the temperature and concentration of the working fluid, the mass and energy in the storage tanks, the compressor intake mass or volume flow rate, discharge pressure, compression ratio, power and consumption work, the heat loads of heat exchanger devices in the system and so on. The results also showed that the integrated coefficient of performances (COPint) of the system were 3.09 and 3.26, respectively, under the two storage strategies while the isentropic efficiency of water vapor compressor was 0.6. The simulation results are very helpful for understanding and evaluating the system as well as for system design, operation and control, and device design or selection in detail.  相似文献   

16.
Research on the operation of the refrigerating machine working on the Voorhees cycle which permits two-stage compression in a single-cylinder compressor has been carried out. The purpose of this research was to study the possibilities of using the Voorhees machine in a domestic refrigerator for production of refrigeration at one or two temperature levels. The experiments were carried out on the basis of a small hermetic lubricated compressor with a low refrigerating capacity operating on a commonly used R12 and natural refrigerant isobutane R600a. The improved refrigerating capacity in the Voorhees cycle with isobutane makes the latter an alternative substitute for conventional refrigerants. Some peculiarities in the operation of a hermetic piston compressor as part of the Voorhees refrigerating machine have been revealed. They require the use of a compressor developed specially for the Voorhees cycle. The method of optimizing the cycle parameters for a one temperature refrigerating system is suggested in this paper. The research carried out proved that the optimum intermediate pressures of the Voorhees refrigerating machine producing refrigeration either at one or two temperature levels are different.  相似文献   

17.
A mathematical model of a refrigeration system in a shipping container has been developed to allow for full-load simulation of its thermal performance. Sub-models are created on the key components: compressor, evaporator, condenser, and thermostatic expansion valve. The sub-models are then coupled by appropriate mass and energy transfer relations to form the full model. Comparison with a series of cooling capacity tests conducted on a 2.2 m (40 ft) fullscale container housed in a temperature-controlled environmental test chamber indicates good agreement, with simulation results being within ±10% uncertainty of measurements.  相似文献   

18.
Compressor is the critical component to the performance of a vapor-compression refrigeration system. The loss-efficiency model including the volumetric efficiency and the isentropic efficiency is widely used for representing the compressor performance. A neural network loss-efficiency model is developed to simulate the performance of positive displacement compressors like the reciprocating, screw and scroll compressors. With one more input, frequency, it can be easily extended to the variable speed compressors. The three-layer polynomial perceptron network is developed because the polynomial transfer function is found very effective in training and free of over-learning. The selection of input parameters of neural networks is also found critical to the network prediction accuracy. The proposed neural networks give less than 0.4% standard deviations and ±1.3% maximum deviations against the manufacturer data.  相似文献   

19.
The leakage is unavoidable and has considerable influence on the performance of a scroll compressor. In a meso-scale scroll compressor, the working gas leakage is more serious because the gaps between the scroll plate pairs are more difficult to be sealed than the case in a normal scale scroll compressor. This paper analyzes the leakage and related factors with a simplified model, and discusses the performance that resulted from gas loss due to both leakages from tangential and axial directions in meso-scale compressors. The discussion and related results are helpful to determine some key parameters in the design and manufacture of meso-scroll compressors.  相似文献   

20.
A detailed one-dimensional steady and transient numerical simulation of the thermal and fluid-dynamic behavior of capillary tube–suction line heat exchangers has been carried out. The governing equations (continuity, momentum, energy and entropy) for fluid flows, together with the energy equation in solids, are solved iteratively in a segregated manner. The discretized governing equations in the zones with fluid flow are coupled using a fully implicit step-by-step method. An implicit central difference numerical scheme and a line-by-line solver were used in solids. A special treatment has been implemented in order to consider transitions (subcooled liquid region, metastable liquid region, metastable two-phase region and equilibrium two-phase region). All the flow variables (enthalpies, temperatures, pressures, mass fractions, heat fluxes, etc.) together with the thermophysical and transport properties are evaluated at each point of the grid in which the domain is discretized. The numerical model allows analysis of aspects such as geometry, type of fluid, critical or non-critical flow conditions, metastable regions and transient cases. Comparison of the numerical simulation with experimental data presented in the technical literature will be shown in Part II of the present paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号