首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
以二苯并噻吩(DBT)的质量分数为0.2%~0.8%的十氢萘溶液为模型化合物,在中压固定床反应器上,研究了全硅MCM-41担载的Ni—W硫化物催化剂上的加氢脱硫反应(HDS)动力学。理论分析和实验结果都表明,常用的Langmiur—Hinshelwood方程不适用于气—液—固三相滴流床积分反应器。应用假1级平推流反应模型,分别得到了各催化剂作用下的该反应的速率常数和表观活化能。催化剂的Ni俐摩尔比(nNi/nW)为0.25、0.5、0.75和1.0时,该催化HDS反应的表观活化能分别为117.3、96.7、64.4和72.9kJ/mol。其中,nNi/nW=0.75的反应表观活化能最低。将催化剂的HDS活性与表观活化能相关联可以发现,表观活化能和催化剂活性之间有对应关系,表观活化能越低,催化剂活性越高。  相似文献   

2.
 采用分步浸渍法制备了TiO2改性的Ni-Mo/MCM-41加氢脱硫(HDS)催化剂,并以质量分数为0.8%的二苯并噻吩的十氢萘溶液作模型化合物,考察了TiO2及其引入顺序对Ni-Mo/MCM-41 HDS反应催化活性的影响。紫外/可见漫反射光谱(UV-Vis)、程序升温还原(TPR)以及NH3-TPD结果表明,TiO2的引入对Ni-Mo/MCM-41催化剂活性物种配位状态及其还原性能和酸性影响不显著。由HDS反应结果可以看出,引入TiO2虽然抑制了Ni-Mo/MCM-41的直接脱硫反应路径(DDS)的活性,但显著提高了其加氢反应路径(HYD)活性,进而提高了总的HDS反应活性。先引入Ni-Mo活性组分然后引入TiO2能更有效地提高催化剂HDS反应活性.根据反应产物组成分析,TiO2可能主要通过提高Ni-Mo/MCM-41硫化物酸性来提高催化剂的HYD和HDS活性。  相似文献   

3.
CoNiMo/MCM-41催化的二苯并噻吩加氢脱硫反应   总被引:2,自引:1,他引:1  
 以质量分数为0.8 %的二苯并噻吩(DBT)的十氢萘溶液为模型化合物,考察了全硅MCM-41担载的CoMo、NiMo以及CoNiMo硫化物催化剂的加氢脱硫(HDS)反应性能。结果表明,DBT在NiMo/MCM-41催化剂上主要通过加氢反应路径脱硫,而在CoMo/MCM-41和CoNiMo/MCM-41催化剂上主要通过直接脱硫反应路径脱硫。NiMo/MCM-41催化剂的HDS活性远高于CoMo/MCM-41或CoNiMo/MCM-41催化剂。CoNiMo/MCM-41催化剂反应性能与CoMo/MCM-41催化剂相似,没有观察到明显的双助剂效应。根据紫外-可见漫反射光谱(UV-Vis)的测定结果,Co与Mo之间的相互作用比Ni与Mo之间的相互作用强,在CoNiMo/MCM-41催化剂中Co会优先与Mo结合,形成与CoMo/MCM-41催化剂中类似的活性相,表现出与CoMo/MCM-41催化剂相似的催化特性。  相似文献   

4.
NiMoNx/MCM-41催化剂的制备及其加氢脱硫性能   总被引:1,自引:0,他引:1  
以MCM-41分子筛为载体,硝酸镍、钼酸铵为前体活性相组元,通过浸渍和程序升温氨还原制备了负载型氮化镍钼双金属催化剂(NiMoNx/MCM-41);对该催化剂进行了XRD、BET、XPS和TEM表征。结果表明,NiMoNx/MCM-41催化剂上的Mo存在着多种价态,Ni、Mo、N 3种元素以Ni3Mo3N和γ-Mo2N的形式存在;负载后MCM-41的比表面积和孔体积有所减小。在微型加氢反应装置上,以噻吩加氢脱硫为探针反应,考察了NiMoNx/MCM-41催化剂的加氢脱硫性能。结果表明,Ni含量(以NiO质量分数计)6%、Mo含量(以MoO3质量分数计)10%的催化剂的加氢脱硫活性最高。提高反应温度或反应压力、降低空速都有利于提高噻吩转化率,虽然NiMoNx/MCM-41催化剂在高硫含量(ωs=5.4%)时有部分γ-Mo2N转变成MoS2,但噻吩转化率保持稳定。  相似文献   

5.
在中压固定床反应器上,以含质量分数0.2%~0.8%二苯并噻吩(DBT)的十氢萘溶液为模型化合物,考察了Ni—W/Si—MCM-41催化下的加氢脱硫反应(HDS)动力学。结果表明,HDS反应的表观活化能(EHDS)和氢解反应的表观活化能(EHYG)在Ni/W摩尔比为0.75时最小,而加氢反应的表观活化能(EHYD)则随Ni/W摩尔比的增加单调降低,表明在Ni—W/Si—MCM-41催化剂上加氢和氢解的活性中心不同。紫外/可见漫反射光谱(UV—Vis)和程序升温还原技术(TPR)表征的结果表明,Ni—W/Si—MCM-41的加氢活性中心可能与催化剂表面八面体配位的Ni物种有关,而氢解活性则与NiO-WO3混合物种的还原性能有一定对应关系。  相似文献   

6.
以MCM 41和Ti MCM 41介孔分子筛为载体,低温还原法(400℃)制备了磷化镍催化剂。采用XRD、BET、FT IR、Py FT IR、XPS、CO吸附等手段对催化剂进行了表征。采用固定床反应器,以二苯并噻吩为模型化合物,评价了磷化镍催化剂的加氢脱硫催化性能。结果表明,〖JP2〗金属Ti的引入可以增强载体和催化剂的B酸和L酸酸性;金属Ti因其电子助剂的作用,能够促进更细小尺寸的Ni2P活性相的形成。在反应温度340℃、反应压力30 MPa、质量空速(MHSV)35 h-1、V(H2)/V(Oil)=650的条件下,Ni2P/Ti MCM 41催化二苯并噻吩加氢脱硫反应的转化率高达9938%,与相同条件下制备的Ni2P/MCM 41相比,提高了约17百分点。Ni2P/Ti MCM 41催化剂具有更优的原料处理能力和更佳的催化活性的原因可归结为金属Ti的电子效应、活性相的尺寸和分散度以及催化剂适宜的酸性。  相似文献   

7.
哌啶对MO/MCM-41催化剂上二苯并噻吩加氢脱硫反应的影响   总被引:2,自引:0,他引:2  
在固定床反应器上考察了哌啶对二苯并噻吩(DBT)的加氢脱硫(HDS)反应活性及反应路径的影响。反应所用催化剂为MCM-41分子筛担载的Co-Mo或Ni-Mo硫化物,MoO3的负载量为20%,Co(Ni)与Mo的摩尔比为0.75。反应前,催化剂用10% H2S和90% H2的混合气进行硫化,硫化温度为400℃,硫化时间为3 h。HDS反应压力为5.0 MPa,温度为260-340℃,催化剂用量为0.2 g。反应原料为含哌啶和DBT分别为0-0.3%和0.8%的十氢萘溶液,液时空速为27 h-1。研究结果表明,无论是在Co-Mo/MCM-41 催化剂上还是在Ni-Mo/MCM-41催化剂上进行DBT的HDS反应,少量哌啶的存在都会大幅度降低催化剂的活性。由DBT的HDS反应产物的选择性分析发现,哌啶对HDS的抑制作用主要体现在对加氢反应路径的毒害作用。随着反应温度的升高,哌啶的加氢脱氮活性提高,HDS的反应活性接近于原料中没有哌啶时的活性,说明哌啶的毒害作用可能是因为它与含硫化合物竞争吸附而低温下加氢脱氮活性较低所致。  相似文献   

8.
用全硅MCM-41担载Ni-Mo双金属活性组分制备了高活性加氢脱硫催化剂,并考察了其对二苯并噻吩(DBT)、4-甲基二苯并噻吩(4-MDBT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)和高硫直馏柴油加氢脱硫反应的活性。结果表明,所研制的催化剂对DBT、4-MDBT、4,6-DMDBT和高硫直馏柴油(w_S=2.83%)均具有很高的加氢脱硫活性。该系列催化剂的最佳Ni/Mo原子比为0.75,高于以γ-Al_2O_3作载体的传统Ni-Mo催化剂的最佳原子比。在DBT的加氢脱硫反应中,双组分催化剂低温下(<300℃)生成环己烷基苯(CHB)的选择性高于联苯(BP),与MoO_3/MCM-41的产物分布不同。随着温度的升高,CHB的选择性显著下降,而生成苯和环己烷的选择性显著提高,说明裂解产物主要由CHB分解而得。由TPR谱图可知,Mo和Ni活性组分在表面存在相互作用,从而使得氢耗特征温度发生变化。在Ni/Mo原子比为0.75时,TPR谱上出现4个特征峰,说明Mo和Ni的配伍性和协同作用对于提高催化剂活性很重要。  相似文献   

9.
K2O对Co-Mo/MCM-41催化剂加氢脱硫性能的影响   总被引:1,自引:1,他引:0  
分别采用分步浸渍法和共浸渍法将K2O引入Co-Mo/MCM-41催化剂的前驱体中,制得的催化剂分别记作K-CoMo/MCM-41和KCoMo/MCM-41,并以质量分数0.8 %二苯并噻吩(DBT)的十氢萘溶液作模型化合物,考察了3种硫化物催化剂对其加氢脱硫(HDS)反应的催化性能。采用XRD、UV-Vis和TPR分析手段对所得的催化剂进行了表征。结果表明,采用共浸渍法引入K2O,不仅破坏了载体全硅MCM-41的结构,还降低了Co-Mo/MCM-41催化剂中八面体配位的Mo物种含量;采用分步浸渍法将K2O引入Co-Mo/MCM-41前驱体中,对催化剂中物种的分布和配位状态影响不大,但抑制了Co-Mo/MCM-41前驱体的还原。DBT的脱硫路径有直接脱硫(DDS)和加氢脱硫(HYD)两条路径,在Co-Mo/MCM-41硫化物催化剂上,主要通过DDS路径脱硫。KCoMo/MCM-41对DBT的DDS和HYD的催化活性都低于Co-Mo/MCM-41,因而总的DBT HDS反应活性也较低。而采用分步浸渍法引入K2O对Co-Mo/MCM-41总的DBT HDS催化活性影响不大,但提高了Co-Mo/MCM-41对DDS路径的催化活性,同时抑制了其对HYD路径的催化活性,降低了反应过程中氢气的消耗。  相似文献   

10.
 以介孔分子筛SBA-15为载体,硝酸镍为镍源,磷酸氢二铵为磷源,采用共浸渍法制备了 P/Ni 摩尔比为0.8的 Ni2P/SBA-15催化剂,然后添加 Li、Na、K、Mg、Ca、Sr 和 Ba 等金属助剂,制备了一系列不同金属助剂的M-Ni2P/SBA-15(其中M为 Li、Na、K、Mg、Ca、Sr 和 Ba)催化剂。采用 XRD 对该系列催化剂的结构进行了表征,并以二苯并噻吩质量分数为1%的二苯并噻吩/十氢萘溶液为模型化合物,在微型固定床反应器上评价它们的加氢脱硫(HDS)性能。结果表明,M-Ni2P/SBA-15催化剂的活性相为 Ni2P。不同的金属助剂对催化剂性能的促进作用不同,其中碱土金属Ca能够明显地提高 Ni2P/SBA-15催化剂的 HDS 活性,Ca 质量分数为3.5%的Ca-Ni2P/SBA-15催化剂的 HDS 活性最好。在反应压力3.0 MPa、反应温度360℃的条件下,3.5%Ca-Ni2P/SBA-15催化剂催化的二苯并噻吩 HDS 的转化率达到98.6%。不同金属助剂以不同方式影响加氢脱硫反应的机理。    相似文献   

11.
将ZSM-5溶于偏硅酸钠水溶液,以十六烷基三甲基溴化铵作模板剂,用水热合成法自组装合成了具有较强酸性和不同SiO2/Al2O3摩尔比(n(SiO2)/n(Al2O3))的ZSM-5/MCM-41介孔硅铝分子筛(记为ZM(x),x=n(SiO2)/n(Al2O3))。以二苯并噻吩(DBT)质量分数为0.8%的十氢萘溶液为模型化合物,考察了Si-MCM-41和ZM(x)担载的Pd和Pt催化剂催化加氢脱硫(HDS)反应的活性。结果表明,担载Pt和Pd不会破坏ZM(x)的介孔结构;DBT在Pd催化剂上主要通过加氢路径脱硫,而在Pt催化剂上则直接脱硫和加氢2条反应路径并重;Si-MCM-41为载体的催化剂HDS活性较低并且失活较快,以ZM(x)为载体的Pd和Pt催化剂加氢活性、加氢脱硫活性、加氢裂化活性及稳定性都有显著提高;ZM(x)担载的Pt和Pd催化剂催化HDS反应的活性可能与其活性组分分散度以及载体的B酸和L酸比例(B/L)有关,具有较好的活性组分分散度和较高B/L比例的ZM(60)担载的Pd和Pt催化剂表现出最佳的加氢脱硫活性和稳定性。  相似文献   

12.
13.
Mesoporous MCM-41 material with high surface area and narrow pore size distribution was synthesized and used as a support for Mo, CoMo, and NiMo catalysts. The molybdenum loading was varied from 2-14 wt% on MCM-41. On 10 wt% Mo/MCM-41, the promoter Co or Ni concentration was varied from 1-5 wt%. All the catalyst samples were characterized by surface area, low temperature oxygen chemisorption, x-ray diffraction (XRD), and temperature programmed reduction methods. Characterization results show that Mo is well dispersed on MCM-41 up to 10 wt%. The catalytic activities were evaluated for thiophene hydrodesulphurization (HDS), cyclohexene hydrogenation (HYD), and furan hydrodeoxygenation (HDO). All three catalytic functionalities vary in a similar manner to that of oxygen chemisorption as a function of Mo loading, indicating that there is a correlation between oxygen uptake and catalytic sites. The activities of these catalysts were compared with γ-Al2O3- and amorphous SiO2-supported catalysts. It was found that MCM-41-supported Mo catalysts displayed superior activities.  相似文献   

14.
Abstract

Mesoporous MCM-41 material with high surface area and narrow pore size distribution was synthesized and used as a support for Mo, CoMo, and NiMo catalysts. The molybdenum loading was varied from 2–14 wt% on MCM-41. On 10 wt% Mo/MCM-41, the promoter Co or Ni concentration was varied from 1–5 wt%. All the catalyst samples were characterized by surface area, low temperature oxygen chemisorption, x-ray diffraction (XRD), and temperature programmed reduction methods. Characterization results show that Mo is well dispersed on MCM-41 up to 10 wt%. The catalytic activities were evaluated for thiophene hydrodesulphurization (HDS), cyclohexene hydrogenation (HYD), and furan hydrodeoxygenation (HDO). All three catalytic functionalities vary in a similar manner to that of oxygen chemisorption as a function of Mo loading, indicating that there is a correlation between oxygen uptake and catalytic sites. The activities of these catalysts were compared with γ-Al2O3- and amorphous SiO2-supported catalysts. It was found that MCM-41-supported Mo catalysts displayed superior activities.  相似文献   

15.
用全硅MCM-41共浸渍法担载Co-Mo制备的催化剂,其金属担载量ω(MoO3)=20%。考察了该催化剂对二苯并噻吩(DBT)、4-甲基二苯并噻吩(4-MDBT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)和高硫直馏柴油加氢脱硫反应的活性,并与日本某深度加氢脱硫催化剂(DHDS)作了比较。结果表明,所研制的催化剂对DBT、4-MDBT、4,6-DMDBT和高硫直馏柴油(ωS=2.83%)均具有很高的加氢脱硫活性,高于DHDS催化剂的活性。MCM-41担载的催化剂最佳Co/Mo原子比为0.75,高于以γ-Al2O3作载体的市场上广泛应用的Co-Mo催化剂,这可能是活性组分在表面高度分散的结果。在DBT的加氢脱硫反应中,联苯(BP)的选择性远高于环己烷基苯(CHB)的选择性,说明Co-Mo/MCM-41催化的加氢脱硫反应中,氢解脱硫反应占主导地位。与Ni—Mo/MCM-41催化的加氢脱硫反应过程相似,加氢脱硫反应中生成的CHB稳定性较低,会进一步分解为苯和环己烷。由TPR谱图可知,表面的Mo和Co活性组分存在相互作用,活性高的Co-Mo/MCM-41催化剂的TPR谱在600℃左右出现一个新的特征峰。  相似文献   

16.
分别以次磷酸(H3PO2)和氢氧化镍为磷源和镍源,采用低温H2等离子体还原法制备体相Ni2P,并研究其在加氢脱硫反应(HDS)中的催化性能。考察了等离子体电源输入电压的升高速率、还原气体(H2)流速、还原终电压和还原时间等因素对Ni2P的形成及其HDS催化性能的影响。采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)和电感耦合等离子体发射光谱(ICP-AES)等手段对所制备的Ni2P样品进行分析表征,以二苯并噻吩(DBT)的十氢萘溶液(质量分数0.8%)为原料评价了Ni2P催化剂的HDS活性。结果表明,以H3PO2为磷源制备Ni2P过程中,H2等离子体还原条件控制对Ni2P单一晶相的形成非常重要。在非最佳还原条件下,所制备的Ni2P样品中会出现Ni2P4O12?10H2O、H3PO4和Ni(PO3)2等含磷杂质,这些杂质会抑制Ni2P的HDS活性。水洗可除去Ni2P中部分含磷杂质,催化剂的反应活性提高不明显;氨水洗涤可有效除去大部分含磷杂质,Ni2P催化剂的反应活性会有明显的提高。因此,Ni2P催化剂合成过程中形成的含磷杂质是影响其催化性能的一个重要因素,选择适宜的制备条件抑制含磷杂质的生成有助于增强催化性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号