首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thick GaN layer deposited by hydride vapor phase epitaxy (HVPE) on a metalorganic chemical vapor deposition (MOCVD) GaN template with a thin low temperature (LT) AlN intermediate layer was investigated.High resolution X-ray resolution diffraction (HRXRD) shows that the crystalline quality of thick GaN layer was improved compared with the template.As confirmed by atomic force microscopy (AFM) observations, the surface morphology of AlN intermediate layer helps to improve the nucleation of GaN epilayer.Photoluminescence (PL) spectra measurement shows its high optical quality and low compressive stress, and micro Raman measurement confirms the latter result.Thus, the deposition of the LT-AlN interlayer has promoted the growth of an HVPE-GaN layer with an excellent crystalline quality.  相似文献   

2.
采用镀Ti插入层在氢化物外延设备中制备了高质量自支撑GaN厚膜。X射线衍射测试发现(0002)峰摇摆曲线的半高宽为260 arcsec;5 K下样品带边发光峰的半高宽为3 meV,室温下样品的带边发光峰也只有20 meV,并且在室温的PL谱中观察不到黄光带;扫描电子显微镜观察显示,腐蚀后的自支撑GaN厚膜表面有位错延伸形成的六角坑,并估算出样品位错密度约为2.1×l07 cm-2。这些结果说明镀Ti插入层有助于提高GaN外延层的晶体质量。通过Raman和低温荧光分析,可以看出自支撑GaN厚膜表面应力已经完全释放。研究了不同温度下样品的荧光特性,证明得到的无应力自支撑GaN厚膜具有很好的晶体质量和光学质量  相似文献   

3.
Several vapor phase processes for the preparation of GaN nanowires, such as chemical vapor deposition (CVD), direct reaction (DR), and hydride vapor phase epitaxial growth (HVPE), have been previously reported. To determine the most appropriate route for fabrication and engineering of GaN nanowires, we prepared nanowires via the three aforementioned routes and characterized their microstructures and photoluminescence (PL) properties. All prepared nanowires were single-crystalline, whowing well-defined crystal structure in X-ray diffraction and transmission electron microscopic analyses. However, high-quality nanowires could most readily be obtained by DR. Large-scale and selective area growth of nanowires could most readily be achieved by CVD and HVPE. PL spectra for the nanowires prepared by HVPE showed a red-shifted center wavelength and wider full width-half maximum (FWHM) value as compared to those prepared by DR or CVD. This indicates the presence of unknown impurities and/or defects in the nanowires prepared by HVPE. Our results indicate that high-quality nanowires can be prepared by DR and CVD, while large-scale selective growth can be achieved by CVD and HVPE.  相似文献   

4.
利用热壁化学气相沉积在Si(111)衬底上获得GaN晶环,采用扫描电镜(SEM)、选择区电子衍射(SAED)、X射线衍射(XRD),光致发光(PL)谱和傅里叶红外吸收谱(FTIR)对晶环的组成、结构、形貌和光学特性进行分析。初步结果证明:在Si(111)衬底上获得择优生长的六方纤锌矿结构的GaN晶环。SEM显示在均匀的薄膜上出现直径约为10μm的5品环,由XRD和SAED的分析证实晶环呈六方纤矿多晶结构,FTIR显示GaN薄膜的主要成分为GaN,同时含有少量的C污染,PL测试表明晶环呈现不同于GaN薄膜的发光特性。  相似文献   

5.
High quality GaN epitaxy thin films have been desired for the energy-efficient,solid-state semiconductor illuminating devices.Silicon substrates offer high crystal quality,low wafer cost,large wafer size,and potential integration with the well-established silicon processing technologies.However,due to the large mismatch in lattice constants and thermal expansion coefficients,it is still challenging to grow high quality GaN on silicon substrates.In this study,high quality GaN epitaxy has been engineering designed to grow on Si(111)substrate using varying GaN/AlGaN composite buffer structures by an Axitron 200 metal-organic vapor phase epitaxy deposition system.A thin AlN seed layer of 25 nm was firstly grown at 720℃.AlGaN layer of different thickness was then grown at 1050℃with subsequent GaN thin film until the total thickness reached 500 nm.The thickness of the subsequent GaN thin film could be increased by reducing the AlGaN thickness in the composite buffer structures.The results have shown that the lower GaN/AlGaN thickness ratio would decrease the dislocation density and provide crack-free,mirror-like upper GaN crystal thin film.On the other hand,the GaN/AlGaN thickness ratio could be designed to be 2-6 to balance the processing cost and the thin film quality for engineering applications.The dislocation density has been about 2×10 9 cm-2.In addition,dislocation close loop was observed near the GaN/AlGaN interface.The annihilation mechanism could be depicted by the reduction in dislocation strain energy.  相似文献   

6.
采用射频等离子体辅助分子束外延 (RF-MBE)技术在蓝宝石衬底上,外延生长了发光波长位于407 nm的InGaN量子点结构,研究了InN成核层技术对其结构和光学特性的影响。材料生长过程中采用反射式高能电子衍射 (RHEED)进行了在位检测,通过原子力显微镜 (AFM),光致发光 (PL)等测试手段表征了InGaN量子点材料的结构和光学特性。结果表明,相对于直接在GaN层上自组织生长InGaN量子点,通过InN成核层技术可以获得高密度、高质量的InGaN量子点结构,量子点尺寸分布更加均匀,主要集中在35~45 nm之间;量子点的密度更高,可以达到3.2×1010/cm2;InN成核层上生长的InGaN量子点的PL发光峰强度为直接在GaN层上生长的InGaN量子点的2倍,发光峰的半高宽较窄,为10 nm  相似文献   

7.
Strained InGaAs/GaAs quantum well (QW) was grown by low-pressure metallorganic chemical vapor deposition (MOCVD). Growth interruption and strain buffer layer were introduced to improve the photoluminescence (PL) performance of the InGaAs/GaAs quantum well. Good PL results were obtained under condition of growth an interruption of 10 s combined with a moderate strain buffer layer. Wavelength lasers of 1064 nm using the QW were grown and processed into devices. Broad area lasers (100 μm × 500 μm) show very low threshold current densities (43 A/cm2) and high slop efficiency (0.34 W/A, per facet).  相似文献   

8.
以H2和CH4作为反应气体,采用热丝化学气相沉积法(HFCVD)在钛合金(Ti6Al4V)平板基体上制备金刚石薄膜,利用扫描电镜(SEM)、X射线衍射仪(XRD)、激光拉曼光谱(Raman)和洛氏硬度仪分析薄膜的表面形貌、结构、成分和附着性能,研究了高温形核-低温生长的梯度降温法对原始钛合金和反应磁控溅射TiC过渡层的钛合金表面沉积金刚石薄膜的影响。结果表明:原始基体区和TiC过渡层区沉积的金刚石薄膜平均尺寸分别为0.77μm和0.75μm,薄膜内应力分别为-5.85GPa和-4.14GPa,TiC层的引入可以有效提高金刚石的形核密度和晶粒尺寸的均匀性,并减少薄膜残余应力;高温形核-低温生长的梯度降温法可以有效提高金刚石的形核密度和质量,并提高原始基体上沉积金刚石薄膜的附着性能。  相似文献   

9.
Chemical mechanical polishing (CMP) was used to etch various GaN materials, such as GaN layers on sapphire and silicon carbide substrates grown by metal-organic chemical vapor deposition and thick GaN layers grown by physical vapor transport. It was found that CMP could reveal the dislocations in GaN surfaces due to a selective etching component. After the optimization of CMP condition, the surface finish improved and the subsurface damage was almost completely removed, demonstrated by atomic force microsco...  相似文献   

10.
在铜基体表面电沉积铜-金刚石复合过渡层,采用电镀铜加固突出基体表面的金刚石颗粒,最后利用热丝化学气相沉积(HFCVD)法在复合过渡层上沉积大面积的与基体结合牢固的连续金刚石膜。采用扫描电子显微镜、拉曼光谱和压痕试验对所沉积的金刚石膜的表面形貌、内应力及膜/基结合性能进行研究。结果表明:金刚石膜由粗大的立方八面体颗粒与细小的(111)显露面颗粒组成,细颗粒填充在粗颗粒之间,形成连续的金刚石膜。复合过渡层中的露头金刚石经CVD同质外延生长成粗金刚石颗粒,而铜表面与粗金刚石之间的二面角上的二次形核繁衍长大成细金刚石颗粒。金刚石膜/基结合力的增强主要来源于金刚石膜与基体之间形成镶嵌咬合和较低的膜内应力。  相似文献   

11.
采用MOCVD技术在蓝宝石衬底(0001)面上生长了GaN外延膜,利用原子力显微镜AFM、扫描电镜SEM分析了薄膜表面形貌,利用纳米压痕仪和UMT试验机考察了GaN膜的硬度、临界载荷以及摩擦学性能等。结果表明,薄膜以二维模式均匀生长,表面平整,硬度达22.1MPa,弹性模量为299.5GPa,与衬底结合紧密,临界载荷达1.6N,与GCr15钢球对磨时摩擦系数仅为0.13,与Si3N4陶瓷球摩擦时膜很快就磨穿。  相似文献   

12.
This study grew GaN epilayers on Si(1 1 1) substrate via molecular beam epitaxy, with a CrN interlayer fabricated through a nitridation process. The X-ray diffraction results showed two peaks corresponding to CrN(1 1 1) and GaN(0 0 0 2). The results of auger electron spectroscopy showed that the concentration of electrons was relatively low in the samples grown with a CrN interlayer, due to CrN preventing Si atoms from diffusing into the GaN epilayer, thereby reducing electron concentration. Photoluminescence spectra indicated that donor-accepter pair recombination (DAP) emission was not generated in the GaN with a CrN interlayer because of improved crystalline quality and a reduction in electron concentration.  相似文献   

13.
采用热壁化学气相沉积工艺在Si(111)衬底上生长GaN晶体膜,并对其生长条件进行研究。用X射线衍射(XRD)、扫描电镜(SEM)、荧光光谱(PL)对样品进行结构、形貌和发光特性的分析。测试结果表明:用此方法得到了六方纤锌矿结构的GaN晶体膜。实验结果显示:采用该工艺制备GaN晶体膜时,选择H2作反应气体兼载体,对GaN膜的形成起着非常有利的作用。  相似文献   

14.
使用反应磁控溅射技术在W18Cr4V高速钢基体表面制备W-C梯度过渡层(WCGC),采用热丝化学沉积法(HFCVD),以甲烷和氢气为反应气体,在基体表面生长金刚石膜。采用场发射扫描电子显微镜(FE-SEM)、X射线衍射仪(XRD)和激光拉曼光谱(Raman)对W-C过渡层和金刚石膜进行检测分析,研究热丝辐射距离和沉积气压对WCGC与金刚石膜的的影响。结果表明:热丝辐射距离对金刚石薄膜和WCGC均有较大影响;WCGC过渡层能够在一定热丝辐射范围内降低Fe在金刚石膜沉积过程的负面影响,有效提高金刚石的形核率,在基体表面得到连续致密的金刚石膜。  相似文献   

15.
Epilayers of GaN were grown on patterned Si (111) substrates of various terrace widths by means of metal organic chemical vapor deposition. The technique of lateral epitaxy on a patterned substrate used the growth of GaN epilayers from the periodic and parallel stripes that form as a result of the substrate etching. Silicon substrates were patterned for various terrace widths of 3 μm, 8 μm, and 18 μm. A low temperature AlN was used as a seed layer for the growth of a 1.5 μm thick GaN epilayer. The as-grown samples were characterized by using double-crystal X-ray diffractometry (DCXRD), photoluminescence and atomic force microscopy (AFM). From the DCXRD spectra, the full width at half maximum (FWHM) of the samples was found to decrease as the terrace width decreased. This behavior indicates that there is an improvement in the crystalline quality of the GaN epilayers as the terrace width decreases. The photoluminescence spectra reveal a decrease in the FWHM and an increase in the peak intensity as the terrace width decreases. This behavior indicates that there is an improvement in the optical quality of the GaN epilayer as the terrace width decreases. The atomic force micrographs reveal a dislocation-free homogeneous surface in the trench region compared to the terrace region with defects such as pits and dislocations. The results clearly show that GaN epilayers grown on a patterned Si substrate with a terrace width 3 μm have a good crystalline quality with minimal threading dislocation and excellent band edge emission.  相似文献   

16.
The minority carrier diffusion length of n-type GaN films grown by metalorganic chemical vapor deposition (MOCVD) has been studied by measuring the surface photovoltaic (PV) spectra. It was found that the minority carrier dif- fusion length of undoped n-type GaN is considerably larger than that in lightly Si-doped GaN. However, the data suggested that the dislocation and electron concentration appear not to be responsible for the minority carrier diffusion length. It is suggested that Si doping plays an important role in decreasing the minority carrier diffusion length.  相似文献   

17.
In this work,the GaN thin films were directly deposited on multilayer graphene(MLG) by plasma-enhanced atomic layer deposition.The deposition was carried out at a low temperature using triethylgallium(TEGa) precursor and Ar/N_2/H_2 plasma.Chemical properties of the bulk GaN and GaN-graphene interface were analyzed using X-ray photoelectron spectroscopy.The sharp interface between GaN and graphene was verified via X-ray reflectivity and transmission electron microscope.The microstructures and the nucleation behaviors of the GaN grown on graphene have been also studied.The results of grazing incidence X-ray diffraction and Raman spectrum indicate that the as-deposited sample is polycrystalline with wurtzite structure and has a weakly tensile stress.Optical properties of the sample were investigated by photoluminescence(PL) at room temperature.The successful growth of GaN on MLG at a low temperature opens up the possibility of ameliorating the performance of electronic and optical devices based on GaN/graphene heterojunction.  相似文献   

18.
The influence of well thickness on the electroluminescence (EL) of InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic chemical vapor deposition is investigated. It is found that the peak wavelength of EL increases with the increase of well thickness when the latter is located in the range of 3.0–5.1 nm. The redshift is mainly attributed to the quantum confined Stark effect (QCSE). As a contrast, it is found that the EL intensity of InGaN/GaN MQWs increases with the increase of well thickness in spite of QCSE. The result of X-ray diffraction demonstrates that the interface become smoother with the increase of well thickness and suggests that the reduced interface roughness can be an important factor leading to the increase of EL intensity of InGaN/GaN MQWs.  相似文献   

19.
ZnO tetrapods and rods were grown on silicon and thermally oxidized porous silicon substrates with and without Au catalyst layer by carbothermal reduction of ZnO powder through chemical vapor transport and condensation method (CVTC). Porous silicon was fabricated by electrochemical etching of silicon in HF solution. The effect of substrates on morphology, structure and photoluminescence spectra of ZnO nanostructures has been studied. The texture coefficient (TC) of each sample was calculated from XRD data that demonstrated random orientation of ZnO nanostructures on the oxidized porous silicon substrate. Moreover, TC indicates the effect of Au catalyst layer on formation of more highly oriented ZnO nanorods. The morphology of the samples was investigated by SEM which confirms formation of ZnO nanostructures on oxidized porous silicon substrates with and without catalyst. A blue-green emission has been observed in ZnO nanostructures grown on Si and the oxidized PS substrates without Au catalyst layer by PL measurements.  相似文献   

20.
研究了Ga2O3/Al2O3膜氢化反应自集结制备GaN薄膜的光致发光特性,讨论了发光机制以及生长条件对其光致发光特性的影响。样品的荧光光谱在347nm有一强发光峰,在412nm有一弱发光峰,这两个峰的强度都随着氨化温度的升高和氨化时间的增长而增强,但峰的位置保持不变。我们认为347nm的峰是GaN的带边发光峰由于薄膜中晶粒尺寸的减小而蓝移造成的,而412nm的发光峰则来源于导带到杂质受主能级的辐射复合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号