首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial fuel cells (MFC) are bio-electrochemical devices used for the generation of electricity from biomass. A single chamber membrane less air-breathing cathode microbial fuel cell (SCMFC) with two different anode configurations was investigated for energy generation using shewanella putrifaciens as bio-catalyst. The graphite felt (GF) anode was modified with 0.008 g/cc polypyrrole nanoparticles (Ppy-NPs) and 0.024 g/cc polythiophene nanoparticles (PTh-NPs) by conventional method. The nanoparticles coating improved the properties such as thermal characteristics and electron transfer capabilities of the anodes, which was confirmed by Thermogravimetric analysis (TGA), electrochemical impedance spectroscopy (EIS) and cyclic voltametry (CV). The variation in the cell potential with time under open circuit condition resulted in voltages of 0.842V and 0.644 V for Ppy-NP and PTh-NP modified GF respectively. A maximum power density (1.22 W/m2) was obtained for Ppy-NP modified GF than PTh-NP modified GF (0.8 W/m2). The results showed that GF coated with nano conductive polymers such as Ppy and PTh are the promising candidates for the best performance of a MFC.  相似文献   

2.
Membraneless nanofluidic fuel cells are devices that utilize fluid flow through nanoporous media which serve as three-dimensional electrodes. In the case of hybrid fuel cells (HFC) an enzymatic and an abiotic catalyst are incorporated on the electrodes. Here we compared two different HFC. In the first one (HFC-1), glucose oxidase- and Pt-based electrodes were used as bioanode and cathode respectively. This cell reached an open circuit voltage (OCV) of 0.55 V and a maximum power density of 5.7 mWcm?2. In the second one (HFC-2), AuAg- and laccase-based electrodes were used as anode and biocathode respectively. This cell exhibited an OCV of 0.91 V and a maximum power density of 17 mWcm?2. Finally, enzymatic electrodes were used to develop a high performance biofuel cell (3.2 mWcm?2) that exhibited high stability over 4 days. These preliminary results indicate that the incorporation of enzymes into the 3D carbon structures is an efficient alternative for miniaturized nanofluidic power sources.  相似文献   

3.
A graphite electrode and a stainless steel electrode immersed in exactly the same medium and polarised at the same potential were colonised by different microbial biofilms. This difference in electroactive microbial population leads stainless steel and graphite to become a microbial cathode and a microbial anode respectively. The results demonstrated that the electrode material can drive the electrocatalytic property of the biofilm opening perspectives for designing single medium MFC.This new discovery led to of the first demonstration of a “single medium MFC.” Such a single medium MFC designed with a graphite anode connected to a stainless steel cathode, both buried in marine sediments, produced 280 mA m?2 at a voltage of 0.3 V for more than 2 weeks.  相似文献   

4.
Surface modification of anode using surfactant has great influence on the electrical performance of a microbial fuel cell (MFC). In this study, the effect of surface‐modified exfoliated graphite used for anode fabrication on a cube‐type MFC batch reactor was examined. The surface exfoliated graphite was modified with 5‐mM anionic surfactant, sodium dodecyl sulfate. Anaerobic sludge used as inoculum containing 70% (v/v) of artificial wastewater and 30% (v/v) of seed sludge in an anode chamber and air cathode was used in cathode side. Anode modification was explored as an approach to enhance the start‐up and improve the performance of the reactor. Scanning electron microscopy was used to evaluate the morphology and activity of electrochemically active bacteria. In the study, the start‐up time of MFC required to approach stable voltage was substantially reduced, and the maximum stable voltage was higher than the control. In addition, the activation resistance of the MFC was considerably reduced, and the maximum power density (1640 mW/m2) was 20% higher than control. However, when the surface of exfoliated graphite was modified with over 10‐mM anionic surfactant, some negative effects on start‐up time, activation resistance and maximum power density were observed. This modification also enhanced the bacterial attachment and biofilm formation on the modified anode surface. The result suggested that surface modification anode with surfactant is effective for electrical responses achieved in the MFC. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A woven thread-based microfluidic fuel cell based on graphite rod electrodes is proposed. Both inter-fiber gaps and inter-weave spaces could provide flow channels for the liquid transport through the woven cotton thread. Therefore, no external pumps are required to maintain the co-laminar flow, benefiting for the integration and miniaturization. In the experiment, sodium formate and hydrogen peroxide are used as fuel and oxidant, respectively. To improve the electrochemical reaction kinetics, KOH and H2SO4 serve as supporting electrolyte at the anode and cathode, respectively. Na2SO4 solution is used as the electrolyte to separate the cathode and anode in the middle flow channel and alleviate the reactant crossover. The open circuit potential of the fuel cell achieves 1.44 V and the maximum current density and power density are 56.6 mA cm?2 and 20.7 mW cm?2, respectively. Moreover, the cell performance reduces with increasing the electrode distance due to a high ohmic resistance. With an increase in the fuel concentration from 1 M to 4 M, the performance increases and it reduces with further increasing to 6 M owing to a correspondingly low flow rate. The highest fuel utilization rate reaches 10.9% at 4 M fuel concentration.  相似文献   

6.
Landfill leachate emerges as a promising feedstock for microbial fuel cells (MFCs). In the present investigation, direct air-breathing cathode-based MFCs are fabricated to investigate the maximum open circuit potential from landfill leachate. Three MFCs that have different cathode areas are fabricated and studied for 17 days under open circuit conditions. The maximum open circuit voltage (OCV) of the cell is observed to be as high as 1.29 V which is the highest OCV ever reported in the literature using landfill leachate. The maximum cathode area specific power density achieved in the reactor is 1513 mW m?2. Further studies are under progress to understand the origin of high OCV obtained from landfill leachate-based MFCs.  相似文献   

7.
Metal-supported solid oxide fuel cells (MS-SOFC) with infiltrated catalysts on both anode and cathode side are operated in direct-flame configuration, with a propane flame impinging on the anode. Placing thermal insulation on the cathode dramatically increases cell temperature and performance. The optimum burner-to-cell gap height is a strong function of flame conditions. Cell performance at the optimum gap is determined within the region of stable non-coking conditions, with equivalence ratio from 1 to 1.9 and flow velocity from 100 to 300 cm s?1. In this region, performance is most strongly correlated to flow velocity and open circuit voltage. The highest peak power density achieved is 633 mW cm?2 at 833 °C, for equivalence ratio of 1.8 and flow velocity of 300 cm s?1. The cell starts to produce power within 10 s of being placed in the flame, and displays stable performance over 10 extremely rapid thermal cycles. The cell provides stable performance for >20 h of semi-continuous operation.  相似文献   

8.
Carbon-supported Co@Au core-shell/C and Au/C nanoparticles are synthesized by a successive reduction method in an aqueous solution and used as the anode and cathode electrocatalysts for the direct hydrazine-hydrogen peroxide fuel cell, respectively. The physical and electrochemical properties of the as-prepared electrocatalysts are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and fuel cell field tests. In this work, the effects of different operation conditions including operation temperature, fuel and oxidant concentration and fuel and oxidant flow rate on the performance of fuel cell are systematically investigated. The experimental results exhibit an open circuit voltage of about 1.79 V and a peak power density of 122.75 mW cm?2 at a current density of 128 mA cm?2 and a cell voltage of 0.959 V operating on 2.0 M N2H4 and 2.0 M H2O2 at 60 °C.  相似文献   

9.
In this study, we propose a high-performance direct ethanol fuel cell (DEFC) using nitrate reduction reaction with a carbon felt electrode (DEFC-HNO3) instead of oxygen reduction reaction (ORR) on a Pt catalyst (DEFC-O2). The activation energy for the nitrate reduction reaction on the carbon electrode is found to be relatively low at ~14.2 kJ mol?1, compared to the ORR. By using the nitrate reduction reaction at the cathode and oxidation of ethanol as a fuel at the anode, the DEFC shows a significantly high open circuit voltage of 0.85 V and two-fold maximal power density of 68 mW cm?2 at 80 °C, compared to the DEFC-O2, due to the significantly fast reaction rate of the nitrate reduction reaction.  相似文献   

10.
阴极电子受体对微生物燃料电池性能的影响   总被引:1,自引:0,他引:1  
以双室型微生物燃料电池为试验装置,比较铁氰化钾、重铬酸钾、高锰酸钾作为阴极电子受体时微生物燃料电池的电压和功率输出。结果表明,高锰酸钾与重铬酸钾混合电子受体对微生物燃料电池性能的提高没有显著效果,不如两者的单独表现;高锰酸钾对应的最高输出电压可达1 160 mV,但很不稳定,会很快下降到600 mV左右,在实际应用中有一定障碍;在酸性条件(pH=3.0)下,重铬酸钾的开路电压为1 081.2 mV,最大输出功率密度为35.1 W/m3,电池内阻为170.27Ω,而且表现稳定,是理想的阴极电子受体。  相似文献   

11.
曹峰  刘佳  高鹏 《可再生能源》2012,(8):108-111
试验以泡沫镍材料作为空气阴极MFC的电极材料,并利用碳粉作为催化剂,在1.24 A/m2的电流密度下获得了214 mW/m2的最大功率密度输出。电位分析结果表明,阴极开路电位为+12 mV,阳极开路电位为-466 mV。采用改变外阻的调节方式,获得了18.6%~57.8%的库伦效率。试验结果表明,碳粉可以作为催化剂材料在泡沫镍基体空气阴极MFC系统中使用。  相似文献   

12.
In this work, a hybrid fuel cell is developed and tested, which is composed of an alkaline anode, an acid cathode, and a cation exchange membrane. In this fuel cell, ethylene glycol and hydrogen peroxide serve as fuel and oxidant, respectively. Theoretically, this fuel cell exhibits a theoretical voltage reaching 2.47 V, whereas it is experimentally demonstrated that the hybrid fuel cell delivers an open‐circuit voltage of 1.41 V at 60°C. More impressively, this fuel cell yields a peak power density of 80.9 mW cm?2 (115.3 mW cm?2 at 80°C). Comparing to an open‐circuit voltage of 0.86 V and a peak power density of 67 mW cm?2 previously achieved by a direct ethylene glycol fuel cell operating with oxygen, this hybrid direct ethylene glycol fuel cell boosts the open‐circuit voltage by 62.1% and the peak power density by 20.8%. This significant improvement is mainly attributed not only to the high‐voltage output of this hybrid system design but also to the faster kinetics rendered by the reduction reaction of hydrogen peroxide.  相似文献   

13.
In this work, a dynamic computational model is developed for a single chamber microbial fuel cell (MFC), consisting of a bio-catalyzed anode and an air-cathode. Electron transfer from the biomass to the anode is assumed to take place via intracellular mediators as they undergo transformation between reduced and oxidized forms. A two-population model is used to describe the biofilm at the anode and the MFC current is calculated based on charge transfer and Ohm's law, while assuming a non-limiting cathode reaction rate. The open circuit voltage and the internal resistance of the cell are expressed as a function of substrate concentration. The effect of operating parameters such as the initial substrate (COD) concentration and external resistance, on the Coulombic efficiency, COD removal rate and power density of the MFC system is studied. Even with the simple formulation, model predictions were found to be in agreement with observed trends in experimental studies. This model can be used as a convenient tool for performing detailed parametric analysis of a range of parameters and assist in process optimization.  相似文献   

14.
Bioelectrochemical systems are devices where organic matter (e.g. wastewater) is oxidized through exoelectrogenic bacteria; this process is a new alternative to energy crisis and to mitigate climate change. If the products of such oxidation are electrons they are called microbial fuel cell (MFC), otherwise if the product is hydrogen these devices are called microbial electrolysis cells (MEC) Mostly, MEC's studies have reported double chamber designs, where the anode and cathode are separated by an ion exchange membrane. Nafion is a proton exchange membrane widely used to study bioelectrochemical devices; however, to our knowledge there are no reports of bipolar membranes (BPM) in these systems. In this study, a double-chambered MEC was constructed to evaluate the performance of the system using Nafion® 117, and FUMASEP®FBM bipolar membrane, separately. Biofilm formation was monitored by cyclic voltammetry and open circuit potential (OCP); maximum power for MFC-Nafion and MFC-BPM were 105.1 and 3.6 mW/m2, respectively. Hydrogen yield and COD removal were significantly different for both MEC systems. Whereas COD removal for MEC-BPM was 44.8%; MEC-Nafion exhibited a COD removal of 87.4%. Solely the latter system produced hydrogen, with a yield of 7.6%.  相似文献   

15.
A co-planar micro Direct Methanol Fuel Cell (μDMFC) configuration was designed, developed and tested. The system geometry consisted of anodic and cathodic micro-channels arranged in the same plane. Firstly, micro-channels for a uniform distribution of oxygen and methanol were designed and realized on a polymeric substrate of polycarbonate. Then, the deposition of the catalytic elements inside the micro-channels by a spray-coating technique was carried out. Micro-channels were then covered by a catalyzed membrane containing separate anode and cathode layers. Different cell configurations were built, tested and evaluated. It was observed that the open circuit voltage varied significantly as a function of the membrane humidification degree and distance between anode and cathode channels in this planar design. In the presence of a large distance between the anode and cathode channel, the OCV reached 0.97 V. This high OCV reflected the absence of methanol cross-over due to the specific planar configuration. Regrettably, the overall cell impedance (ohmic and polarization resistance) limited the performance. A maximum power density of 1.3 mW cm−2 (active area) was achieved at room temperature with the smallest distance between anode and cathode (0.25 mm).  相似文献   

16.
Voltage reversal during microbial fuel cell stack operation   总被引:1,自引:0,他引:1  
Microbial fuel cells (MFC) can be used to directly generate electricity from organic matter, but the voltage produced by a single reactor is only ∼0.5 V. Voltage can be increased by stacking cells, i.e. by linking individual reactors in series, as is commonly done with hydrogen fuel cells, to provide a higher voltage output. A two-cell air-cathode MFC stack tested here produced a working voltage of 0.9 V (external load 500 Ω) and had an open circuit voltage (OCV) of 1.3 V when operated in fed batch mode under substrate-sufficient conditions. When multiple cells are stacked together, however, charge reversal can result in the reverse polarity of one or more cells and a loss of power generation. We investigated the causes of charge reversal and the impact of prolonged reversal on power generation using a two air-cathode MFCs stack. When voltage began to decline at the end of a fed batch cycle, we observed voltage reversal with one cell producing a working voltage of 0.6 V, and the other cell having a reversed voltage of −0.58 V, producing only a minimal stack voltage of 0.02 V. The reason for the voltage reversal was shown to be fuel starvation, resulting in a loss of bacterial activity. Voltage reversal adversely affected bacteria on the anode of the affected cell, as shown by a relative decrease in cell performance following a cycle of starvation (no feeding). The control of voltage reversal will be crucial for long-term operation of MFCs in series. Rapid feeding of a cell can restore positive voltage generation, but the long-term impact of charge reversal will be inactivation of bacteria and it will require that the affected cells be short-circuited to maintain stack power production. A better understanding of the long term effects of voltage reversal on power generation by MFC stacks is needed in order to efficiently increase voltage production by using stacked MFC systems.  相似文献   

17.
Microbial fuel cells (MFCs) are biochemical-catalyzed systems in which electricity is produced by oxidizing biodegradable organic matters in presence of either bacteria or enzyme. This system can serve as a device for generating clean energy and, also wastewater treatment unit. In this paper, production of bioelectricity in MFC in batch and continuous systems were investigated. A dual chambered air–cathode MFC was fabricated for this purpose. Graphite plates were used as electrodes and glucose as a substrate with initial concentration of 30 g l−1 was used. Cubic MFC reactor was fabricated and inoculated with Saccharomyces cerevisiae PTCC 5269 as active biocatalyst. Neutral red with concentration of 200 μmol l−1 was selected as electron shuttle in anaerobic anode chamber. In order to enhance the performance of MFC, potassium permanganate at 400 μmol l−1 concentration as oxidizer was used. The performance of MFC was analyzed by the measurement of polarization curve and cyclic volatmmetric data as well. Closed circuit voltage was obtained using a 1 kΩ resistance. The voltage at steady-state condition was 440 mV and it was stable for the entire operation time. In a continuous system, the effect of hydraulic retention time (HRT) on performance of MFC was examined. The optimum HRT was found to be around 7 h. Maximum produced power and current density at optimum HRT were 1210 mA m−2 and 283 mW m−2, respectively.  相似文献   

18.
The present work focuses on the optimization of operating parameters using Box Behnken design (BBD) in RSM to obtain maximum power density from a glycerol based air-breathing T-shaped MFC. The major parameters influencing the experiment for enhancing the cell performance in MFC are glycerol/fuel concentration, anode electrolyte/KOH concentration, anode electrocatalyst loading and cathode electrolyte/KOH concentration. The ambient oxygen is used as the oxidant. The acetylene black carbon (CAB) supported laboratory synthesized electrocatalyst Pd–Pt (16:4)/CAB is used as anode electrocatalyst and commercial Pt (40 wt%)/CHSA as the cathode electrocatalyst. The quadratic model predicts the appropriate operating conditions to achieve highest power density from the laboratory designed T-shaped MFC. The p-value of less than 0.0001 and F-value of greater than 1 i.e., 26.32 indicate that the model is significant. The optimum conditions predicted by the RSM model were glycerol concentration of 1.07 M, anode electrolyte concentration of 1.62 M anode electrocatalyst loading of 1.12 mg/cm2 and cathode electrolyte concentration of 0.69 M. The negligible deviation of only 1.07% between actual/experimental power density (2.76 mW/cm2) and predicted power density (2.79 mW/cm2) was recorded. This model reasonably predicts the optimum conditions using Pd–Pt (16:4)/CAB electrocatalyst to obtain maximum power density from glycerol based MFC.  相似文献   

19.
Binder-free NiO/MnO2-carbon felt electrode is prepared with a facile two-step hydrothermal method. The NiO self-grown on the carbon felt is used as the skeleton structure to support the in-situ growth of MnO2. Both the core and shell materials are excellent pseudocapacitance materials. The compositing of such pseudocapacitance metal oxides can produce synergistic effects, so that the modified electrode has a high capacitance. NiO/MnO2-carbon felt electrode also possesses a high specific surface area, super hydrophilicity and good biocompatibility, which are conducive to the enrichment of typical exoelectrogen Geobacter. As the anode, NiO/MnO2-carbon felt electrode can effectively improve the electricity generation and methyl orange (MO) wastewater degradation performances of microbial fuel cell (MFC). The highest output voltage and the maximum power density of MFC with NiO/MnO2-carbon felt anode are respectively 652 mV and 628 mW m?2, which are much higher than those of MFC with MnO2-carbon felt anode (613 mV, 544 mW m?2), NiO-carbon felt anode (504 mV, 197 mW m?2) and unmodified carbon felt anode (423 mV, 162 mW m?2). The decolourization efficiency and the chemical oxygen demand (COD) removal rate of MO for MFC with NiO/MnO2-carbon felt anode are respectively 92.5% and 58.2% at 48 h.  相似文献   

20.
Microchannel geometry, electrode surface area, and better fuel utilization are important aspects of the performance of a microfluidic fuel cell (MFC). In this communication, a membraneless spiral‐shaped MFC fabricated with Ni as anode and C as a cathode supported over a porous filter paper substrate is presented. Vanadium oxychloride and dilute sulfuric acid solutions are used as fuel and electrolyte, respectively, in this fuel cell system. The device generates a maximum open‐circuit voltage of ~1.2 V, while the maximum energy density and current density generated from the fuel cell are ~10 mW cm?2 and ~51 mA cm?2, respectively. The cumulative energy density generated from the device after five cycles are measured as ~200 mW after regeneration of the fuel by applying external voltage. The spiral design of the fuel cell enables improved fuel utilization, rapid diffusive transport of ions, and in‐situ regeneration of the fuel. The present self‐standing spiral‐shaped MFC will eliminate the challenges associated with two inlet membrane‐less fuel cells and has the potential to scale up for commercial application in portable energy generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号