首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous photocatalytic hydrogen production and CO2 reduction (to form CO and CH4) from water using methanol as a hole scavenger were investigated using silver-modified TiO2 (Ag/TiO2) nanocomposite catalysts. A simple ultrasonic spray pyrolysis (SP) method was used to prepare mesoporous Ag/TiO2 composite particles using TiO2 (P25) and AgNO3 as the precursors. The material properties and photocatalytic activities were compared with those prepared by a conventional wet-impregnation (WI) method. It was found that the samples prepared by the SP method had a larger specific surface area and a better dispersion of Ag nanoparticles on TiO2 than those prepared by the WI method, and as a result, the SP samples showed much higher photocatalytic activities toward H2 production and CO2 reduction. The optimal Ag concentration on TiO2 was found to be 2 wt%. The H2 production rate of the 2% Ag/TiO2–SP sample exhibited a six-fold enhancement compared with the 2% Ag/TiO2–WI sample and a sixty-fold enhancement compared with bare TiO2. The molar ratio of H2 and CO in the final products can be tuned in the range from 2 to 10 by varying the reaction gas composition, suggesting a viable way of producing syngas (a mixture of H2 and CO) from CO2 and water using the prepared Ag/TiO2 catalysts with energy input from the sun.  相似文献   

2.
This paper describes results on the electrochemical reduction of carbon dioxide using the same device as the typical planar nickel-YSZ cermet electrode supported solid oxide fuel cells (H2-CO2, Ni-YSZ|YSZ|LSCF-GDC, LSCF, air). Operation in both the fuel cell and the electrolysis mode indicates that the electrodes could work reversibly for the charge transfer processes. An electrolysis current density of ≈1 A cm−2 is observed at 800 °C and 1.3 V for an inlet mixtures of 25% H2-75% CO2. Mass spectra measurement suggests that the nickel-YSZ cermet electrode is highly effective for reduction of CO2 to CO. Analysis of the gas transport in the porous electrode and the adsorption/desorption process over the nickel surface indicates that the cathodic reactions are probably dominated by the reduction of steam to hydrogen, whereas carbon monoxide is mainly produced via the reverse water gas shift reaction.  相似文献   

3.
The Nafion membrane used as an electrolyte in the Polymer Electrolyte Membrane Fuel Cell (PEMFC) needs hydration to retain the proton conductivity. In PEMFC operation the reactant gas needs to be humidified either externally or internally. To reduce the cost, weight and complexities of the PEMFC system, it is beneficial to operate the PMEFC without humidification of the reactant gases because it eliminates the need for a complex gas-humidification sub-system. In recent years, worldwide R&D efforts have been made to remove the external humidifying unit from the PEMFC system by endowing the membrane electrode assembly (MEA) with self-humidifying ability. Efforts have been made to minimize humidification of the ionic polymer by introducing SiO2 either in the catalyst layer or on the gas diffusion layer or on the membrane directly. In-house has made two silica powders, 1. Aerogel silica, surface area is 582 m2/g and 2. Silica powder with surface area of 45 m2/g is incorporated in the fuel cell electrode. This improves the hydrophilic and protonation properties of the SiO2 powders when treated with H2SO4. Initial experiments under humidified conditions showed that the Silica powder, which was not treated with H2SO4, gave marginally lower performance compared to the H2SO4 treated sample. The polarization behaviors of the electrode with and without SiO2 in the catalyst layer were studied. The PEMFC was also studied under different humidity conditions. The electrodes and the PEMFC were characterized by different electrochemical techniques like cyclic voltammetry and Electrochemical Impedance Spectroscopy (EIS). The results are presented in this paper.  相似文献   

4.
The search for a clean energy source as well as the reduction of CO2 emissions to the atmosphere are important strategies to resolve the current energy shortage and global warming issues. We have demonstrated, for the first time, a Pebax/poly(dimethylsiloxane)/polyacrylonitrile (Pebax/PDMS/PAN) composite hollow fiber membrane not only can be used for flue gas treatment but also for hydrogen purification. The composite membranes display attractive gas separation performance with a CO2 permeance of 481.5 GPU, CO2/H2 and CO2/N2 selectivity of 8.1 and 42.0, respectively. Minimizing the solution intrusion using the PDMS gutter layer is the key to achieving the high gas permeance while the interaction between poly(ethylene oxide) (PEO) and CO2 accounts for the high selectivity. Effects of coating solution concentration and coating time on gas separation performance have been investigated and the results have been optimized. To the best of our knowledge, this is the first polymeric composite hollow fiber membrane for hydrogen purification. The attractive gas separation performance of the newly developed membranes may indicate good potential for industrial applications.  相似文献   

5.
Alkaline earth elements (Mg, Ca and Sr) on Ni-La2O3 catalyst have been investigated as promoters for syngas production from dry CO2 reforming of methane (DRM). The catalysis results of DRM performance at 600 °C show that the Sr-doped Ni-La2O3 catalyst not only yields the highest CH4 and CO2 conversions (∼78% and ∼60%) and highest H2 production (∼42% by vol.) but also has the lowest carbon deposition over the catalyst surface. The XPS, O2-TPD, H2-TPR and FTIR results show that the excellent performance over the Sr-doped Ni-La2O3 catalyst is attributed to the presence of a high amount of lattice oxygen surface species which promotes C-H activation in DRM reaction, resulting in high H2 production. Moreover, these surface oxygen species on the Ni-SDL catalyst can adsorb CO2 molecules to form bidentate carbonate species, which can then react with the surface carbon species formed during DRM, resulting in higher CO2 conversion and lower carbon formation.  相似文献   

6.
8Y2O3-ZrO2 (8YSZ)/NiO cermet anode-supported symmetric cell is introduced and fabricated using a tape casting process to analyze the anodic behavior of an anode-supported cell. An anode-supported symmetric cell helps us understand the complex anode structure of cermets. The anodic behavior of 8YSZ/NiO is compared to a MIEC electrode of Sm0.2Ce0.8O1.9 (SDC)/NiO. The anodic behavior of a 8YSZ/NiO cermet electrode is investigated and discussed with respect to the hydrogen partial pressure (p(H2)), water partial pressure (p(H2O)), area specific resistance (ASR), activation energy (Ea), thermal cycle, and redox process. Based on these studies, an empirical reaction model of 8YSZ/NiO is established, and the related reaction processes are discussed. On impedance spectra diagram, high and medium frequency arcs are associated with the charge transfer process and the H2O formation reaction, while the low frequency arc corresponds to the dissociative adsorption and the surface diffusion/gas phase diffusion process. Changes in microstructure by redox and thermal cycling have a significant effect on the electrochemical properties and structural stability of a thick anode-supported cermet structure.  相似文献   

7.
In order to point out the effect of the support to the catalyst for oxygen reduction reaction nano-crystalline Nb-doped TiO2 was synthesized through a modified sol-gel route procedure. The specific surface area of the support, SBET, and pore size distribution, were calculated from the adsorption isotherms using the gravimetric McBain method. The support was characterized by X-ray diffraction (XRD) technique.The borohydride reduction method was used to prepare Nb-TiO2 supported Pt (20 wt.%) catalyst. The synthesized catalyst was analyzed by TEM technique.Finally, the catalytic activity of this new catalyst for oxygen reduction reaction was investigated in acid solution, in the absence and the presence of methanol, and its activity was compared towards the results on C/Pt catalysts.Kinetic analysis reveals that the oxygen reduction reaction on Nb-TiO2/Pt catalyst follows four-electron process leading to water, as in the case of C/Pt electrode, but the Tafel plots normalized to the electrochemically active surface area show very remarkable enhancement in activity of Nb-TiO2/Pt expressed through the value of the current density at the constant potential.Moreover, Nb-TiO2/Pt catalyst exhibits higher methanol tolerance during the oxygen reduction reaction than the C/Pt catalyst.The enhancement in the activity of Nb-TiO2/Pt is consequence of both: the interactions of Pt nanoparticles with the support and the energy shift of the surface d-states with respect to the Fermi level what changes the surface reactivity.  相似文献   

8.
A major factor in global warming is CO2 emission from thermal power plants, which burn fossil fuels. One technology proposed to prevent global warming is CO2 recovery from combustion flue gas and the sequestration of CO2 underground or near the ocean bed. Solid oxide fuel cell (SOFC) can produce highly concentrated CO2, because the reformed fuel gas reacts with oxygen electrochemically without being mixed with air in the SOFC. We therefore propose to operate multi-staged SOFCs with high utilization of reformed fuel to obtain highly concentrated CO2. In this study, we estimated the performance of multi-staged SOFCs considering H2 diffusion and the combined cycle efficiency of a multi-staged SOFC/gas turbine/CO2 recovery power plant. The power generation efficiency of our CO2 recovery combined cycle is 68.5%, whereas the efficiency of a conventional SOFC/GT cycle with the CO2 recovery amine process is 57.8%.  相似文献   

9.
In this paper, we investigate the CO2 microbubble removal on carbon nanotube (CNT)-supported Pt catalysts in direct methanol fuel cells (DMFCs). The experiments involve the incorporation of near-catalyst-layer bubble visualization and simultaneous electrochemical measurements in a DMFC anodic half cell system, in which CH3OH electro-oxidation generate carbon dioxide (CO2) microbubbles. We observe rapid removal of smaller CO2 bubble sizes and less bubble accumulation on a Pt-coated CNT/CC (Pt/CNT/CC, CC means carbon cloth) electrode. The improved half cell performances of the high CO2 microbubble removal efficiency on the CNT-modified electrode (Pt/CNT/CC) were 34% and 32% higher than on Pt/CC and Pt/CP electrodes, respectively.  相似文献   

10.
The photocatalytic reduction of CO2 to valuable chemicals and fuels is an efficient approach to control the ever-rising CO2 level in the atmosphere. The present paper describes a significant improvement in photoreduction of carbon dioxide (CO2) using sulfur (S) doped titania (S-TiO2) nanoparticles as a photocatalyst under UV-A and visible light irradiation. The sulfur doping was done by following a simple sonothermal method, and a series of photocatalysts were synthesized with the varied amount of S doping. Various characterization techniques were employed for the photocatalysts such as XRD, surface area, UV–Visible, SEM, TEM, and XPS. The XPS reveals that S is predominantly present as S4+ in S-TiO2. The electronic structure for S-TiO2 anatase was calculated with the Vienna ab initio simulation package (VASP) code in the framework of spin-polarized density functional theory. Additional states closer to the valence band are produced inside the band gap as a result of doping. In situ reductive reaction conditions can partially reduce the catalyst, and results in the shift of Fermi level into the conduction band. It is suggested that S-doping increases catalyst surface conductivity, improves the charge transfer rate and the rate of photocatalytic reactions. The prepared series of catalysts have shown excellent activity under UV-A and visible light for photocatalytic reduction of CO2. The effect of the different base including K2CO3, Na2CO3, NaOH and KOH; catalyst amount; sulfur doping amount; and light wavelength were monitored. Methane, ethylene, propylene, and propane were observed as reaction products. In 24 h, S-TiO2 exhibited the highest photoactivity in KOH aqueous solution with a maximum yield of 6.25 μmol g?1 methane, 2.74 μmol g?1 of ethylene, 0.074 μmol g?1 of propylene and 0.030 μmol g?1 of propane under UV-A irradiation. The catalysts were active in visible light and able to generate methane and methanol in acetonitrile-H2O mixture with/without TEOA as sacrificial donor producing 846.5 μmol g?1 of methane and 4030 μmol g?1 of methanol for the former and 167.6 μmol g?1 of methane and 12828.4 μmol g?1 of methanol for the latter case. An estimate demonstrates that mass transfer does not limit the CO2 reaction.  相似文献   

11.
The present study reports on experimental investigations of the dynamic behavior of CO2 gas bubbles and the performance of a 9 cm2 transparent direct methanol fuel cell (DMFC). The movement of CO2 gas bubbles in the anode channel subjected to a flow of aqueous methanol solution was visualized. A series of parametric studies was carried out to evaluate the effects on the CO2 gas bubbles dynamics as well as the cell performance. It was observed that the pores around the corner of the channel ribs and the intersection of the carbon cloth fibres were favorable sites for the emergence of CO2 gas bubbles. The growth and coalescence of CO2 gas bubbles resulted in gas slugs blocking the channel and the pores in porous diffusion layer as well. Then the gas slugs were pushed by the aqueous methanol solution flow to detach and sweep downstream, clearing all the existing small bubbles on the porous diffusion layer surface. The processes of emergence, growth, coalescence, detachment, and sweeping of the gas bubbles were found to occur periodically. High flow rates of the aqueous methanol solution resulted in small discrete CO2 gas bubbles and short gas slugs. Increasing temperature of the methanol solution increased the quantity of CO2 gas bubbles. More CO2 gas bubbles and large gas slugs appeared in the channels with increasing pressure difference between the anode and the cathode. The cell performance was improved with increasing aqueous methanol flow rates, feed temperature, feed concentration, and the pressure difference between the anode and the cathode.  相似文献   

12.
The effect of surface modification of an alumina powder supported nano-scale nickel catalyst used in aqueous-phase reforming of ethanol has been explored in this paper. The Al2O3 powder was prepared by a solution combustion synthesis (SCS) route and the surface of the powder was modified by a non-thermal RF plasma treatment using nitrogen gas. Catalysts were coated by an impregnation method. The performances of the unmodified and modified Ni/Al2O3 catalysts have been compared from a catalytic activity, selectivity, and microstructural point of view. The catalytic activity results showed that while nature, relative ratio and selectivity of the products both in gas and liquid effluents did not change, catalytic activity (in terms of EtOH conversion and H2 yield per g) of the sample increased after plasma modification. Microstructural (XRD, surface area) analysis showed that phase content and surface area of unmodified and modified catalysts are similar, while TEM and H2-chemisorption showed higher metal surface area, higher metal dispersion and lower active metal particle size for the modified sample compared to the unmodified sample. The temperature programmed reduction (TPR) analysis demonstrated stronger support-metal interaction and smaller NiO particles for the modified catalyst at lower heat treatment temperature. The temperature programmed desorption (TPD) of ammonia analysis showed stronger acidity for the modified support, which can explain better dispersion of the metal particles on the modified catalyst compared to the unmodified sample.  相似文献   

13.
The object of this study was to develop a high performance hydrogen-metal oxide cell. A hydrogen permeable membrane electrode (HPME)-H2-NiOOH rechargeable cell was tested for this purpose and the performance of the cathodic hydrogen gas production through the membrane electrode was investigated. A Pd 66.6 wt%-Ag 13.4 wt%-Au 20 wt% alloy membrane electrode, of which one surface was covered with PdPt black catalyst and the other with Pd black, was used to make one of the walls of the hydrogen gas containing vessel. When the PdPt catalysed electrolyte-facing surface is cathodically polarized in concentrated KOH solutions, hydrogen atoms dissolve in the membrane by penetrating it and leave the other palladized surface as free hydrogen gas, which passes into the gas chamber. The influence of electrode potential, hydrogen pressure in the gas chamber, membrane thickness, electrolyte concentration and temperature on the hydrogen production rate and yield into the gas chamber was investigated and a refined analysis on the said phenomena was carried out.  相似文献   

14.
The aqueous-phase reforming (APR) of n-butanol (n-BuOH) over Ni(20 wt%) loaded Al2O3 and CeO2 catalysts has been studied in this paper. Over 100 h of run time, the Ni/Al2O3 catalyst showed significant deactivation compared to the Ni/CeO2 catalyst, both in terms of production rates and the selectivity to H2 and CO2. The Ni/CeO2 catalyst demonstrated higher selectivity for H2 and CO2, lower selectivity to alkanes, and a lower amount of C in the liquid phase compared to the Ni/Al2O3 sample. For the Ni/Al2O3 catalyst, the selectivity to CO increased with temperature, while the Ni/CeO2 catalyst produced no CO. For the Ni/CeO2 catalyst, the activation energies for H2 and CO2 production were 146 and 169 kJ mol−1, while for the Ni/Al2O3 catalyst these activation energies were 158 and 175 kJ mol−1, respectively. The difference of the active metal dispersion on Al2O3 and CeO2 supports, as measured from H2-pulse chemisorption was not significant. This indicates deposition of carbon on the catalyst as a likely cause of lower activity of the Ni/Al2O3 catalyst. It is unlikely that carbon would build up on the Ni/CeO2 catalyst due to higher oxygen mobility in the Ni doped non-stoichiometric CeO2 lattice. Based on the products formed, the proposed primary reaction pathway is the dehydrogenation of n-BuOH to butaldehyde followed by decarbonylation to propane. The propane then partially breaks down to hydrogen and carbon monoxide through steam reforming, while CO converts to CO2 mostly through water gas shift. Ethane and methane are formed via Fischer-Tropsch reactions of CO/CO2 with H2.  相似文献   

15.
The present study aims at exploring a concept which can convert coal-bed methane (containing methane, air and carbon dioxide) to synthesis gas. Without pre-separation and purification, the low-cost synthesis gas can be produced by coupling air partial oxidation and CO2 reforming of coal bed methane. For this purpose, the co-precipitated Ni-Mg-ZrO2 catalyst was prepared. It was found that the co-precipitated Ni-Mg-ZrO2 catalyst exhibited the best activity and stability at 800 °C during the reaction. The conversions of CH4 and CO2 maintained at 94.8% and 82.1% respectively after 100 h of reaction. The effect of reaction temperature was investigated. The H2/CO ratio in the product was mainly dependent on the feed gas composition. By changing O2/CO2 ratio of the feed gases, the H2/CO ratio in the off-gas varied between 0.8 and 1.8. The experimental results showed that the high thermal stability and basic properties of the catalyst, and the strong metal-support interaction played important roles in improving the activity and stability of the catalyst. With the combined reactions and the Ni-Mg-ZrO2 catalyst, the coal bed methane could be converted to synthesis gas, which can meet the need of the subsequent synthesis processes.  相似文献   

16.
A series of nanocrystalline mesoporous Ni/Al2O3SiO2 catalysts with various SiO2/Al2O3 molar ratios were prepared by the sol-gel method for the carbon dioxide methanation reaction. The synthesized catalysts were evaluated in terms of catalytic performance and stability. The catalysts were studied using XRD, BET, TPR and SEM. The BET results indicated that the specific surface area of the samples with composite oxide support changed from 254 to 163.3 m2/g, and an increase in the nickel crystallite size from 3.53 to 5.14 nm with an increment of Si/Al molar ratio was visible. The TPR results showed a shift towards lower temperatures, indicating a better reducibility and easier reduction of the nickel oxide phase into the nickel metallic phase. Furthermore, the catalyst with SiO2/Al2O3 molar ratio of 0.5 was selected as the optimal catalyst, which showed 82.38% CO2 conversion and 98.19% CH4 selectivity at 350 °C, high stability, and resistivity toward sintering. Eventually, the optimal operation conditions were specified by investigating the effect of H2/CO2 molar ratio and gas hourly space velocity (GHSV) on the catalytic behavior of the denoted catalyst.  相似文献   

17.
Ti modified Pt/ZrO2 catalysts were prepared to improve the catalytic activity of Pt/ZrO2 catalyst for a single-stage WGS reaction and the Ti addition effect on ZrO2 was discussed based on its characterization and WGS reaction test. Ti impregnation into ZrO2 increased the surface area of the support and the Pt dispersion. The reducibility of the catalyst was enhanced in the controlled Ti impregnation (∼20 wt.%) over Pt/ZrO2 by the Pt-catalysed reduction of supports, particularly, at the interface between ZrO2 and TiO2. The significant CO2 gas band in the DRIFTS results of Pt/Ti[20]/ZrO2 indicated that the Ti addition made the formate decomposition rate faster than the Pt/ZrO2 catalyst, linked with the enhanced Pt dispersion and reducibility of the catalyst. Consequently, Ti impregnation over the ZrO2 support led to a remarkably enhanced CO conversion and the reaction rate of Pt/Ti[20]/ZrO2 increased by a factor of about 3 from the bare Pt/ZrO2 catalyst.  相似文献   

18.
Sr3NiPtO6 and Sr3CuPtO6 were evaluated as low-platinum alternative oxygen reduction catalysts in a solid polymer electrolyte fuel cell at 80 °C. The oxides were synthesised using a new method based on an organometallic precursor route. The electrochemical evaluation showed similar oxygen reduction performance for Sr3NiPtO6 and Sr3CuPtO6, with a slightly higher activity for Sr3NiPtO6. In comparison with the oxides, the oxygen reduction activity for a commercial Pt/C catalyst was approximately 10 times higher. XRD analysis of the used electrodes revealed that the oxides were not stable in the PEMFC environment, and converted into platinum during operation. Elemental analysis of the used electrodes also showed a difference in platinum formation, where the platinum content on the surface of the electrode facing the gas diffusion layer was several times higher for Sr3NiPtO6 than Sr3CuPtO6. This indicates that the Sr3NiPtO6 electrode may be more susceptible to platinum migration.  相似文献   

19.
Ag-promoted TiO2 nanoparticles immobilized over the cordierite monolithic support for dynamic and selective photo-reduction of CO2 to CO by the use of hydrogen has been investigated. Ag-loaded TiO2 NPs synthesized by a facile sol–gel method were coated over the monolith channels by dip-coating method. The samples were characterized by XRD, Raman, FTIR, SEM, TEM, XPS, N2 adsorption–desorption, UV–Vis and PL spectroscopy. The photo-activity test of Ag-modified TiO2 NPs was conducted for dynamic photocatalytic CO2 reduction with H2 as a reductant via a reverse water gas shift (RWGS) reaction in a cell type and monolith photo-reactors. Using 5 wt. % Ag/TO2 NPs, CO2 was energetically converted to CO with a yield rate 1335 μmole g-catal.?1 h?1, a 111 fold-higher than the amount of CO produced over the pure TiO2 catalyst. More importantly, photo-activity of Ag/TiO2 catalyst for CO evolution can be improved by 209 fold using monolith photo-reactor than the cell type reactor under the same operating conditions. This enactment was evidently due to the efficient light harvesting with larger illuminated surface area inside monolith micro-channels and efficient charges separation in the presence of Ag-metal. The reusability of Ag/TiO2 NPs loaded over the monolithic support showed favorable recycling capability than the catalyst dispersed in a cell reactor. A possible reaction mechanism for this observation has been discussed in detail.  相似文献   

20.
A bifunctional RuO2–IrO2/Pt electrocatalyst for the unitized regenerative fuel cell (URFC) was synthesized by colloid deposition and characterized by analytical methods like TEM, XRD, etc. The result reveals that RuO2–IrO2 was well dispersed and deposited on the surface of Pt black. With deposited RuO2–IrO2/Pt as the catalyst of oxygen electrode, the performance of fuel cell/water electrolysis of unitized regenerative fuel cell (URFC) was studied in detail. URFC with deposited RuO2–IrO2/Pt shows better performance than that of URFC with mixed RuO2–IrO2/Pt catalyst. Cyclic performance of URFC with deposited RuO2–IrO2/Pt is very stable during 10 cyclic tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号