首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An experimental investigation of the effects of separate hydrogen and nitrogen addition on the emissions and combustion of a diesel engine was performed and the results are presented in the current paper.  相似文献   

2.
Overcoming diesel engine emissions trade-off effects, especially NOx and Bosch smoke number (BSN), requires investigation of novel systems which can potentially serve the automobile industry towards further emissions reduction. Enrichment of the intake charge with H2 + N2 containing gas mixture, obtained from diesel fuel reforming system, can lead to new generation low polluting diesel engines.  相似文献   

3.
In this study, an electrolyser was used to supply hydrogen to the SI engine. Firstly, the appropriate operation point for the electrolyser was determined by adjusting the amount of KOH in the electrolyte to 5%, 10%, 20% and 30% by mass, and applying 12 V, 16 V, 20 V, 24 V and 28 V voltages. Tests were first carried out with the gasoline without the use of an electrolyser, followed by operating the electrolyser at the appropriate point and sending obtained H2 and O2 to the engine in addition to the gasoline. The SI engine was operated between 2500 rpm and 3500 rpm engine speeds with and without hydrogen addition. Cylinder pressure, the amount of gasoline, H2 and O2 consumed by the engine and the emission data were collected from the test system at the aforementioned engine speeds. Furthermore, indicated engine torque, indicated specific energy consumption, specific emissions and HRR values were calculated. According to the results obtained, improvement in ISEC values was observed, and CO and THC values were improved by up to 21.3% and 86.1% respectively. Even though the dramatic increase in NOx emissions cannot be averted, they can be controlled by equipment such as EGR three-way catalytic converter.  相似文献   

4.
This work aims to numerically study the performance, combustion and emission characteristics of a hydrogen assisted diesel engine under various operating conditions. Simulations were performed using multi-dimensional software KIVA4 coupled with CHEMKIN. The Kelvin–Helmholtz and Rayleigh–Taylor hybrid break up model was implemented to accurately model the spray development. A detailed reaction mechanism was constructed to take into account the chemical kinetics of diesel and hydrogen, and it was validated against the experimental results with 0% of hydrogen induction. Simulation results showed that at low engine speeds, the indicated thermal efficiency, in-cylinder pressure and apparent heat release rate increased significantly with the induction of hydrogen. On the other hand, at high engine speed and high load conditions, no tangible changes on the engine performance, combustion characteristics were observed. In terms of emissions, CO and soot emissions were shown to be reduced under most of the engine operating conditions. Whereas for NOx emissions, a slight increase was observed at low engine speed of 1600 rpm.  相似文献   

5.
Owing to high specific energy and low emissions production, hydrogen is a desirable alternative fuel. The combustion and emission performance can be improved by hydrogen addition injected in-cylinder, intake manifold and aspirated with air. However, engine loads and hydrogen-air ration have a significant effect on the performance, combustion and emission of the diesel-hydrogen (high speed direct injection) HSDI engine. In this paper, the CFD method is used to calculate the combustion process of a diesel-hydrogen dual HSDI engine working at constant speed of 4000 rpm, at different hydrogen added from intake port (hydrogen volume fraction of 0%–10%) and five engine loads (equivalent to 20%, 40%, 60%, 80% and 100% of its maximum output power), respectively. The modelling results showed that the in-cylinder pressure and temperature under low engine load were more affected by hydrogen addition. With increasing hydrogen volume fraction, the indicated expansion work and in-cylinder peak pressure increased, and combustion duration decreased due to faster fuel-air mixing and spray flame speed.  相似文献   

6.
Biogas valorization as fuel for internal combustion engines is one of the alternative fuels, which could be an interesting way to cope the fossil fuel depletion and the current environmental degradation. In this circumstance, an experimental investigation is achieved on a single cylinder DI diesel engine running under dual fuel mode with a focus on the improvement of biogas/diesel fuel combustion by hydrogen enrichment. In the present investigation, the mixture of biogas, containing 70% CH4 and 30% CO2, is blended with the desired amount of H2 (up to 10, 15 and 20% by volume) by using MTI 200 analytical instrument gas chromatograph, which flow thereafter towards the engine intake manifold and mix with the intake air. Depending on engine load conditions, the volumetric composition of the inducted gaseous fraction is 20–50% biogas, 2–10% H2 and 45–78% air. Near the end of the compression stroke, a small amount of diesel pilot fuel is injected to initiate the combustion of the gas–air mixture. Firstly, the engine was tested on conventional diesel mode (baseline case) and then under dual fuel mode using the biogas. Consequently, hydrogen has partially enriched the biogas. Combustion characteristics, performance parameters and pollutant emissions were investigated in-depth and compared. The results have shown that biogas enriched with 20% H2 leads to 20% decrease of methane content in the overall exhaust emissions, associated with an improvement in engine performance. The emission levels of unburned hydrocarbon (UHC) and carbon monoxide (CO) are decreased up to 25% and 30% respectively. When the equivalence ratio is increased, a supplement decrease in UHC and CO emissions is achieved up to 28% and 30% respectively when loading the engine at 60%.  相似文献   

7.
The combustion of hydrogen–diesel blend fuel was investigated under simulated direct injection (DI) diesel engine conditions. The investigation presented in this paper concerns numerical analysis of neat diesel combustion mode and hydrogen enriched diesel combustion in a compression ignition (CI) engine. The parameters varied in this simulation included: H2/diesel blend fuel ratio, engine speed, and air/fuel ratio. The study on the simultaneous combustion of hydrogen and diesel fuel was conducted with various hydrogen doses in the range from 0.05% to 50% (by volume) for different engine speed from 1000 – 4000 rpm and air/fuel ratios (A/F) varies from 10 – 80. The results show that, applying hydrogen as an extra fuel, which can be added to diesel fuel in the (CI) engine results in improved engine performance and reduce emissions compared to the case of neat diesel operation because this measure approaches the combustion process to constant volume. Moreover, small amounts of hydrogen when added to a diesel engine shorten the diesel ignition lag and, in this way, decrease the rate of pressure rise which provides better conditions for soft run of the engine. Comparative results are given for various hydrogen/diesel ratio, engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions.  相似文献   

8.
The current study addresses engine specification and second thermodynamic law analysis of the CI diesel engine fueled with hydrogen, DME, and diesel at six engine speeds. The 3-D simulation was first carried out and then the results were exploited to calculate availability through a developed in-house code. Availability analysis was performed separately for chemical and thermo-mechanical availability to highlight each fuel'0s capacity in chemical and mechanical efficiency delivery. The results indicate that hydrogen fuel prevails in chemical and thermo-mechanical availability, indicated power, and mean effective in-cylinder pressure under all crank angle and engine speeds. Temperature distribution has more extensive and intensified region developed across the cylinder, although hydrogen demonstrated the lowest ISFC (indicated specific fuel consumption) value. With regard to engine speed, 2000 rpm shows overall better IP (indicated power), IMEP (indicated mean effective pressure), chemical and thermo-mechanical availability, irrespective of fuel type. The mean irreversibility rate for PMC (pre-mixed combustion) and MCC (mixing controlled combustion) combustion phase shows a different trend. Furthermore, hydrogen fueled engine demonstrates the highest temperature distribution of 2736 K and the wall heat flux to the amount of 29160 W. The variance of chemical availability for Hydrogen from 1500 to 4000 rpm decreases by crank-angle evolution from 43.3% to 10.1% corresponding to 10–40°CA after top dead center.  相似文献   

9.
The free-piston engine (FPE) is a new crankless engine, which operates with variable compression ratio, flexible fuel applicability and low pollution potential. A numerical model which couples with dynamic, combustion and gas exchange was established and verified by experiment to simulate the effects of different hydrogen addition on the combustion and emission of a diesel FPE. Results indicate that a small amount of hydrogen addition has a little effect on the combustion process of the FPE. However, when the ratio of hydrogen addition (RH2) is more than 0.1, the RH2 gives a positive effect on the peak in-cylinder gas pressure, temperature, and nitric oxide emission of the FPE, while soot emission decreases with the increase of hydrogen addition. Moreover, the larger RH2 induces a longer ignition delay, shorter rapid combustion period, weaker post-combustion effect, greater heat release rate, and earlier peak heat release rate for the FPE. Nevertheless, the released heat in rapid combustion period is significantly enhanced by the increase of RH2.  相似文献   

10.
An experimental study was conducted on a diesel engine fueled with ultra-low sulfur diesel (ULSD), palm methyl ester (PME), a blended fuel containing 50% by volume each of the ULSD and PME, and naturally aspirated hydrogen, at an engine speed of 1800 rev min−1 under five loads. Hydrogen was added to provide 10% and 20% of the total fuel energy. The following results are obtained with hydrogen addition. There is little change in peak in-cylinder pressure and peak heat release rate. The influence on fuel consumption and brake thermal efficiency is engine load and fuel dependent; being negative for the three liquid fuels at low engine loads but positive for ULSD and B50 and negligible for PME at medium-to-high loads. CO and CO2 emissions decrease. HC decreases at medium-to-high loads, but increases at low loads. NOx emission increases for PME only but NO2 increases for the three liquid fuels. Smoke opacity, particle mass and number concentrations are all reduced for the three liquid fuels.  相似文献   

11.
Regarding the limited fossil fuel reserves, the renewable ethanol has been considered as one of the substitutional fuels for spark ignition (SI) engines. But due to its high latent heat, ethanol is usually hard to be well evaporated to form the homogeneous fuel–air mixture at low temperatures, e.g., at idle condition. Compared with ethanol, hydrogen possesses many unique combustion and physicochemical properties that help improve combustion process. In this paper, the performance of a hydrogen-enriched SI ethanol engine under idle and stoichiometric conditions was investigated. The experiment was performed on a modified 1.6 L SI engine equipped with a hydrogen port-injection system. The ethanol was injected into the intake ports using the original engine gasoline injection system. A self-developed hybrid electronic control unit (HECU) was adopted to govern the opening and closing of hydrogen and ethanol injectors. The spark timing and idle bypass valve opening were governed by the engine original electronic control unit (OECU), so that the engine could operate under its original target idle speed for each testing point. The engine was first fueled with the pure ethanol and then hydrogen volume fraction in the total intake gas was gradually increased through increasing hydrogen injection duration. For a specified hydrogen addition level, ethanol flow rate was reduced to keep the hydrogen–ethanol–air mixture at stoichiometric condition. The test results showed that hydrogen addition was effective on reducing cyclic variations and improving indicated thermal efficiency of an ethanol engine at idle. The fuel energy flow rate was reduced by 20% when hydrogen volume fraction in the intake rose from 0% to 6.38%. Both flame development and propagation periods were shortened with the increase of hydrogen blending ratio. The heat transfer to the coolant was decreased and the degree of constant volume combustion was enhanced after hydrogen addition. HC and CO emissions were first reduced and then increased with the increase of hydrogen blending fraction. The acetaldehyde emission from the hydrogen-enriched ethanol engine is lower than that from the pure ethanol engine. However, the addition of hydrogen tended to increase NOx emissions from the ethanol engine at idle and stoichiometric conditions.  相似文献   

12.
In this paper, a rotary engine equipped with an n-butanol and hydrogen port-injection system was developed to investigate the combustion and emissions characteristics of a hydrogen-blended n-butanol rotary engine at part load and stoichiometric conditions. A self-developed hybrid electronic control unit was adopted to adjust the injection durations of n-butanol and hydrogen. The rotary engine was run under the conditions of 4000 rpm, a manifold absolute pressure of 35 kPa and a fixed spark timing of 45 °CA before the top dead center during the whole testing operation. The hydrogen volumetric fraction in the total intake was varied from 0% to 6.30%. The test results manifested that the brake thermal efficiency and chamber temperature were simultaneously increased with hydrogen addition. The hydrogen supplement obviously shortened flame development and propagation periods. Both chamber pressure integral heat release fraction versus crank angle were increased when the hydrogen fraction was enhanced. HC emissions were reduced by 54.5% when hydrogen volume fraction was raised from 0% to 6.30%, CO and CO2 emissions were also reduced after increasing hydrogen blending fraction. NOx emissions were mildly elevated due to the improved chamber temperature.  相似文献   

13.
The aim of this study is to investigate the effects of hydrogen addition on RCCI combustion of an engine running on landfill gas and diesel oil. A single cylinder heavy– duty diesel engine is set in operation at 9.4 bar IMEP. A certain amount of diesel fuel per cycle is fed into the engine and hydrogen is added to landfill gas while keeping fixed fuel energy content. The developed simulation results confirm that hydrogen addition which is the most environmental friendly fuel causes the fuel consumption per any cycle to reduce. Also, the peak pressure is increased while the engine load is reduced up to 4%. Landfill gas which is enriched with hydrogen improves the rate of methane dissociation and reduces the combustion duration at the same time the engine operation would not be exposed to diesel knock. Moreover, hydrogen addition to landfill gas would reduce engine emissions considerably.  相似文献   

14.
Ammonia is a good hydrogen carrier and can be well combined with hydrogen for combustion. The combustion performance of the mixtures of ammonia and hydrogen in a medium-speed marine diesel engine was investigated theoretically. The HCCI combustion mode was selected for reducing thermal-NOx production. The start fire characteristic of the NH3–H2 mixtures was studied under different equivalence ratio, hydrogen-doped ratio, and intake air temperature and pressure. Then, the combustion performance of the NH3–H2 mixtures (doping 30% hydrogen) was analyzed at a typical operation condition of engine. The addition hydrogen improved the laminar flame velocity of ammonia, and affected the NOx emission. For the medium-speed marine engine fueled with NH3–H2, reducing combustion temperature, introducing EGR and combining with post-treatment technology would be a feasible scheme to reduce NOx emission.  相似文献   

15.
This study investigates the characteristics of combustion noise from a diesel engine with hydrogen added to intake air. The engine noise with hydrogen addition of 10 vol% to the intake air was lower than that with diesel fuel alone at late diesel-fuel injection timings. A transient combustion-noise-generation model was introduced to discuss noise characteristics based on energy conversion from combustion impact to noise via structure vibration. The results show that the maximum combustion impact energy had a predominant effect on the maximum engine noise power for each cycle. Therefore, the combustion noise largely contributed to the total engine noise in an early stage of the expansion stroke. The dependences of engine noise on the diesel-fuel injection timing for different hydrogen fractions are discussed considering the characteristics of maximum combustion impact energy for each frequency.  相似文献   

16.
Environmental benefits are one of the main motivations encouraging the use of natural gas as fuel for internal combustion engines. In addition to the better impact on pollution, natural gas is available in many areas. In this context, the present work investigates the effect of hydrogen addition to natural gas in dual fuel mode, on combustion characteristics improvement, in relation with engine performance. Various hydrogen fractions (10, 20 and 30 by v%) are examined. Results showed that natural gas enrichment with hydrogen leads in general to an improved gaseous fuel combustion, which corresponds to an enhanced heat release rate during gaseous fuel premixed phase, resulting in an increase in the in-cylinder peak pressure, especially at high engine load (4.1 bar at 70% load). The highest cumulative and rate of heat release correspond to 10% Hydrogen addition. The combustion duration of gaseous fuel combustion phase is reduced for all hydrogen blends. Moreover, this technique resulted in better combustion stability. For all hydrogen test blends, COVIMEP does not exceed 10%. However, no major effect on combustion noise was noticed and the ignition delay was not affected significantly. Regarding performance, an important improvement in energy conversion was obtained with almost all hydrogen blends as a result of improved gaseous fuel combustion. A maximum thermal efficiency of 32.5%, almost similar to the one under diesel operation, and a minimum fuel consumption of 236 g/kWh, are achieved with 10% hydrogen enrichment at 70% engine load.  相似文献   

17.
In this research, effects of hydrogen addition on a diesel engine were investigated in terms of engine performance and emissions for four cylinders, water cooled diesel engine. Hydrogen was added through the intake port of the diesel engine. Hydrogen effects on the diesel engine were investigated with different amount (0.20, 0.40, 0.60 and 0.80 lpm) at different engine load (20%, 40%, 60%, 80% and 100% load) and the constant speed, 1800 rpm. When hydrogen amount is increased for all engine loads, it is observed an increase in brake specific fuel consumption and brake thermal efficiency due to mixture formation and higher flame speed of hydrogen gas according to the results. For the 0.80 lpm hydrogen addition, exhaust temperature and NOx increased at higher loads. CO, UHC and SOOT emissions significantly decreased for hydrogen gas as additional fuel at all loads. In this study, higher decrease on SOOT emissions (up to 0.80lpm) was obtained. In addition, for 0.80 lpm hydrogen addition, the dramatic increase in NOx emissions was observed.  相似文献   

18.
Combustion knock is one of the primary constraints limiting the performance of spark-ignition hydrogen fuelled internal combustion engines (H2-ICE) as it limits the torque output and efficiency, particularly as the equivalence ratio nears stoichiometric operation. Understanding the characteristic of combustion knock in a H2-ICE will provide better techniques for its detection, prevention and control while enabling operation at conditions of improved efficiency.

Engine studies examining combustion knock characteristics were conducted with hydrogen and gasoline fuels in a port-injected, spark-ignited, single cylinder cooperative fuel research (CFR) engine. Characterization of the signals at varying levels of combustion knock from cylinder pressure and a block mounted piezoelectric accelerometer were conducted including frequency, signal intensity, and statistical attributes. Further, through the comparisons with gasoline combustion knock, it was found that knock detection techniques used for gasoline engines, can be applied to a H2-ICE with appropriate modifications. This work provides insight for further development in real time knock detection. This would help in improving reliability of hydrogen engines while allowing the engine to be operated closer to combustion knock limits to increase engine performance and reducing possibility of engine damage due to knock.  相似文献   


19.
The effect of the physical and chemical properties of biodiesel fuels on the combustion process and pollutants formation in Direct Injection (DI) engine are investigated numerically by using multi-dimensional Computational Fluid Dynamics (CFD) simulation. In the current study, methyl butanoate (MB) and n-heptane are used as the surrogates for the biodiesel fuel and the conventional diesel fuel. Detailed kinetic chemical mechanisms for MB and n-heptane are implemented to simulate the combustion process. It is shown that the differences in the chemical properties between the biodiesel fuel and the diesel fuel affect the whole combustion process more significantly than the differences in the physical properties. While the variations of both the chemical and the physical properties between the biodiesel and diesel fuel influence the soot formation at the equivalent level, the variations in the chemical properties play a crucial role in the NOx emissions formation.  相似文献   

20.
In the current investigation, the enrichment of hydrogen with the honge biodiesel blend and diesel is used in a compression ignition engine. The biodiesel is derived from the honge oil and mixed with diesel fuel by 20% (v/v). Thereafter, hydrogen at different volume flow rates (10 and 13 lpm) is introduced into the intake manifold. The outcomes by enrichment of hydrogen on the performance, combustion and emission characteristics are investigated by examining the brake thermal efficiency, fuel consumption, HC, CO, CO2, NOₓ emissions, in-cylinder pressure, combustion duration, and rate of heat release. The engine fuelled with honge biodiesel blend is found to enhance the thermal efficiency, combustion characteristics. Compare to diesel, the BTE increased by 2.2% and 6% less fuel consumption for the HB20 + 13H2 blend. Further, reduction in the emission of exhausts gases like CO and HC by 21% and 24%, respectively, are obtained. This is due to carbon-free structure in hydrogen. Moreover, due to high pressure in the cylinder, there is a slight increase in oxides of nitrogen emission compare to diesel. The combustion characteristics such as rate of heat release, combustion duration, and maximum 2rate of pressure rise and in-cylinder pressure are high due to hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号