首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crude oil graduate depletion, as well as aspects related to environmental pollution and global warming instigated many researches concerning alternative fuels. Natural gas (NG) is one of the most attractive available fuels. A promising technique for its use in internal combustion engines is the dual fuel concept. One of the main problems with this technique is that, at low loads, the engine efficiency decreases compared to conventional diesel. The unburned hydrocarbons and carbon monoxide emissions are also higher in dual fuel mode. An effective method to compensate the demerits of limited lean-burn ability and slow burning velocity of NG is to mix it with a fuel that possesses wide flammability limit and fast burning velocity. Hydrogen (H2) is thought to be the best gaseous candidate for natural gas.In the present work, NG enrichment with various H2 blends is investigated as a technique for improving dual fuel mode, especially at low loads. Impact on engine performance and emissions is experimentally examined. Total BSFC is considerably reduced. An important benefit in terms of BTE, reaching to increase a 12% with the 10%H2 blend compared to the pure NG case, is also achieved. THC and CO emissions are in general reduced as a result of the improvement of gaseous fuel utilization. CO2 emissions are also in general reduced. Even though a slight increase is in overall observed for NOx emissions, it's almost insignificant.  相似文献   

2.
This paper investigates the emissions of the unburned gaseous fuels of a heavy-duty diesel engine converted to operate under natural gas (NG)-diesel and hydrogen (H2)-diesel dual fuel combustion mode. The detailed effects of the addition of H2, NG, engine load, and engine speed on the exhaust emissions of the unburned H2, methane (CH4), and carbon monoxide (CO) were experimentally investigated. The combustion efficiencies of CH4 and H2 supplemented were also examined and compared.  相似文献   

3.
《能源学会志》2020,93(1):129-151
There are some challenges about NOX emissions exhausted from diesel engines fueled with biodiesel. Due to increasingly stringent emission regulations, the different methods such as varying the engine operating parameters, treatment with antioxidant additive and blending fuels have been adapted to reduce emissions of biodiesel combustion. One of the effective methods is the combustion of dual or blending fuels. Various fuels such as gasoline, hydrogen, natural gas, biogas, different types of alcohols and also fuel additives have been used to reduce biodiesel disadvantages. This study reviews the potential of the different fuels as an additive in biodiesel fuel in correspond to reduce NOX emissions. The general reduction of NOX has been observed with the presence of gasoline, biogas and alcohols in biodiesel blends. The reduction of NOX in biodiesel-hydrogen, biodiesel-diesel or biodiesel–CNG combustion has not been observed through all engine conditions. Moreover the retarding injection timing, the lower injection pressure, EGR higher than 30% can result in the reduced NOX emissions. However it seems the decrease in NOX emissions can be achieved by the use of most fuels in blending with biodiesel under all engine operating conditions, if only the proper injection parameters and blending proportions of fuels are set.  相似文献   

4.
Many performance and emission tests have been carried out in reciprocating diesel engines that use biodiesel fuel over the past years and very few in gas turbine engines. This work aims at assessing the thermal performance and emissions at full and partial loads of a 30 kW diesel micro-turbine engine fed with diesel, biodiesel and their blends as fuel. A cycle simulation was performed using the Gate Cycle GE Enter software to evaluate the thermal performance of the 30 kW micro-turbine engine. Performance and emission tests were carried out on a 30 kW diesel micro-turbine engine installed in the NEST laboratories of the Federal University of Itajubá, and the performance results were compared with those of the simulation. There was a good agreement between the simulations and the experimental results from the full load down to about 50% of the load for diesel, biodiesel and their blends. The biodiesel and its blends used as fuel in micro-turbines led to no significant changes in the engine performance and behaviour compared to diesel fuel. The exhaust emissions were evaluated for pure biodiesel and its blends and conventional diesel. The results revealed that the use of biodiesel resulted in a slightly higher CO, lower NOx and no SO2 emissions.  相似文献   

5.
In this work, the combustion and emission characteristics were studied in a 186FA diesel engine fuelled with biodiesel–diesel to examine the effect of the percentage of biodiesel in the blends, and the experimental investigation was conducted with various blending ratios of biodiesel under different operating conditions. In addition, the combustion noise of the diesel engine fuelled with biodiesel–diesel was analysed, and then the emission characteristics of NOx and soot were studied through simulation analysis where the formation rate and distribution of NOx and soot for pure diesel and B20 fuel were described. Based on the simulation data of the original diesel engine fuelled with B20 fuel, the swirl ratio and fuel injection timing were optimised and the technical measures were suggested to reduce the two different emissions simultaneously. The simulation results showed the emission characteristics were optimal when the swirl ratio was 2.7 and fuel injection timing was 7.5° degree of crank angle before top dead centre respectively.  相似文献   

6.
Natural gas, which is among the alternative fuels, has become widespread in the transportation as it is both economical and environmentally friendly. While the use of natural gas is at a significant level in spark ignition engines, it has not yet been implemented in compression ignition engines (CI) as it worsens combustion due to ignition delay. In CI engines, however, the combustion properties of natural gas (NG) can be improved by adding hydrogen (H2) to NG. This is one of the methods applied to use natural gas in CI engines. In this experimental study, two different volumetric rates of NG and NG/H2 mixtures were added to the combustion air in a CI engine, and engine performance and emissions were examined under different engine loads. The experiments were performed at two different engine speeds, four different engine loads and no-load condition. An engine cylinder pressure of 59.16 bar, which is the closest value to the 59.39 bar obtained in the use of diesel fuel, was obtained at 1500 rpm for “Diesel + NG(500 g/h)” and 59.9 bar (highest values) was obtained for “Diesel + (500 g/h) [80%NG+20%H2]" at 1750 rpm. For “Diesel + NG(250 g/h)” (Mix1) and “Diesel + NG(500 g/h)” (Mix2), as the engine speed increases, at the point where the maximum in-cylinder pressure is obtained occurs further to the right from top dead center (TDC). With the addition of 500 g/h NG, an increase of 4.5% was achieved in the cylinder pressure at full load, while an increase of 6.5% was achieved in the case of using “Diesel + (500 g/h) [80%NG+20%H2]". Although the effect of the NG and NG/H2 mixtures on in-cylinder pressure was small, the fuel consumption and thermal efficiency improved. Substantial improvements in hydrocarbon (HC) emissions were observed with the use of “Diesel + (250 g/h)[80%NG+20%H2]”. Carbon dioxide (CO2) emissions decreased with speed increase, but no significant differences in terms of CO2 emissions were observed between the mixtures. There was a maximum difference of 15% between the diesel and the mixtures in CO2 emissions. Although there was a decrease in nitrogen oxide (NOx) levels with the increase in engine speed, the lowest NOx emissions of 447.6 ppmvol was observed in “Diesel + NG(250 g/h)” (Mix1) at 1750 rpm at maximum load.  相似文献   

7.
The exhaust gas-fuel reforming technique known as reformed exhaust gas recirculation (REGR) can generate on-board hydrogen-rich gas mixture (i.e., reformate) by catalytic reforming of the exhaust gas and fuel added into the reformer and then recirculate the reformate into the engine cylinder, which can realize the combination of hydrogen-rich lean combustion and exhaust gas recirculation. The REGR technique can be employed to achieve efficient and stable lean-burn combustion for the marine engine fueled with natural gas (i.e., marine NG engine) and it is considered as an effective way to meet the stringent ship emissions regulations. In the present study, an experimental investigation into the effects of reformate addition ratio (Rre) and excess air ratio (λ) on the combustion and emissions characteristics of a marine NG engine under various loads was conducted, and the potential of applying the REGR technique in a marine NG engine to achieve low emissions (i.e., International Maritime Organization Tier Ⅲ emissions legislations for international ships) was discussed. The results indicate that the addition of the hydrogen-rich reformate gases can extend lean-burn limit. For a given λ, the flame development duration and rapid combustion duration decrease with the increase of Rre, and the combustion efficiency is improved. The brake specific NOx emissions first increase and then decrease with the increase of Rre due to the competition between the combustion phase and total heat release value. The brake specific THC emissions decline with the increase of Rre, while the reverse holds for the brake specific CO emissions, and the behavior tends to be obvious under large λ. It is demonstrated that the combination of REGR and the lean-burn combustion strategy can improve the trade-off relationship between the NOx emissions and brake specific fuel consumption of the marine NG engine to meet the IMO Tier Ⅲ NOx emissions legislations and maintain relatively low brake specific fuel consumption.  相似文献   

8.
Biogas valorization as fuel for internal combustion engines is one of the alternative fuels, which could be an interesting way to cope the fossil fuel depletion and the current environmental degradation. In this circumstance, an experimental investigation is achieved on a single cylinder DI diesel engine running under dual fuel mode with a focus on the improvement of biogas/diesel fuel combustion by hydrogen enrichment. In the present investigation, the mixture of biogas, containing 70% CH4 and 30% CO2, is blended with the desired amount of H2 (up to 10, 15 and 20% by volume) by using MTI 200 analytical instrument gas chromatograph, which flow thereafter towards the engine intake manifold and mix with the intake air. Depending on engine load conditions, the volumetric composition of the inducted gaseous fraction is 20–50% biogas, 2–10% H2 and 45–78% air. Near the end of the compression stroke, a small amount of diesel pilot fuel is injected to initiate the combustion of the gas–air mixture. Firstly, the engine was tested on conventional diesel mode (baseline case) and then under dual fuel mode using the biogas. Consequently, hydrogen has partially enriched the biogas. Combustion characteristics, performance parameters and pollutant emissions were investigated in-depth and compared. The results have shown that biogas enriched with 20% H2 leads to 20% decrease of methane content in the overall exhaust emissions, associated with an improvement in engine performance. The emission levels of unburned hydrocarbon (UHC) and carbon monoxide (CO) are decreased up to 25% and 30% respectively. When the equivalence ratio is increased, a supplement decrease in UHC and CO emissions is achieved up to 28% and 30% respectively when loading the engine at 60%.  相似文献   

9.
In this research, an experimental investigation has been performed to give insight into the potential of biodiesel as an alternative fuel for High Speed Direct Injection (HSDI) diesel engines. The scope of this work has been broadened by comparing the combustion characteristics of diesel and biodiesel fuels in a wide range of engine loads and EGR conditions, including the high EGR rates expected for future diesel engines operating in the low temperature combustion (LTC) regime.The experimental work has been carried out in a single-cylinder engine running alternatively with diesel and biodiesel fuels. Conventional diesel fuel and neat biodiesel have been compared in terms of their combustion performance through a new methodology designed for isolating the actual effects of each fuel on diesel combustion, aside from their intrinsic differences in chemical composition.The analysis of the results has been sequentially divided into two progressive and complementary steps. Initially, the overall combustion performance of each fuel has been critically evaluated based on a set of parameters used as tracers of the combustion quality, such as the combustion duration or the indicated efficiency. With the knowledge obtained from this previous overview, the analysis focuses on the detailed influence of biodiesel on the different diesel combustion stages known ignition delay, premixed combustion and mixing controlled combustion, considering also the impact on CO and UHC pollutant emissions.The results of this research explain why the biodiesel fuel accelerates the diesel combustion process in all engine loads and EGR rates, even in those corresponding with LTC conditions, increasing its possibilities as alternative fuel for future DI diesel engines.  相似文献   

10.
The effects of biodiesel (rapeseed methyl ester, RME) and different diesel/RME blends on the diesel engine NOx emissions, smoke, fuel consumption, engine efficiency, cylinder pressure and net heat release rate are analysed and presented. The combustion of RME as pure fuel or blended with diesel in an unmodified engine results in advanced combustion, reduced ignition delay and increased heat release rate in the initial uncontrolled premixed combustion phase. The increased in-cylinder pressure and temperature lead to increased NOx emissions while the more advanced combustion assists in the reduction of smoke compared to pure diesel combustion. The lower calorific value of RME results in increased fuel consumption but the engine thermal efficiency is not affected significantly. When similar percentages (% by volume) of exhaust gas recirculation (EGR) are used in the cases of diesel and RME, NOx emissions are reduced to similar values, but the smoke emissions are significantly lower in the case of RME. The retardation of the injection timing in the case of pure RME and 50/50 (by volume) blend with diesel results in further reduction of NOx at a cost of small increases of smoke and fuel consumption.  相似文献   

11.
The proven feasibility of ammonia combustion in compression-ignition engines has led to it being considered as a carbon-free replacement for diesel fuel. Due to its high auto-ignition temperature, however, a more realistic strategy would be to aim for a step-change reduction in carbon emissions by co-fuelling a diesel engine with ammonia. In assessing this strategy, ammonia gas was introduced into the air-intake manifold of a compression-ignition engine, while diesel fuel was injected directly into the cylinder to ignite the mixture. By substituting only 3% of the air intake by ammonia, the diesel consumption and the CO2 emissions decreased by 15%. The combustion and emission characteristics were then compared when the same percentage of air intake (by mass) was substituted by either dissociated ammonia (a mixture of H2, N2 with small percentages of NH3) or pure hydrogen, to mimic the other possible forms in which the co-fuel can be delivered to the engine. The addition of pure hydrogen resulted in the best engine performance, both in terms of combustion efficiency and regulated emission quality. The thermal combustion efficiency declined by only ∼0.5% when the H2 was replaced by undissociated ammonia at low load, but N2O now appeared in the emissions. Co-fuelling the engine with dissociated ammonia may provide the ideal compromise in terms of thermal combustion efficiency and emission quality, while also providing a waste-heat recovery mechanism.  相似文献   

12.
Biofuels extracted from non-edible oil is sustainable and can be used as an alternative fuel for internal combustion engines. This study presents the performance, emission and combustion characteristic analysis by using simarouba oil (obtained from Simarouba seed) as an alternative fuel along with hydrogen and exhaust gas recirculation (EGR) in a compression ignition (CI) engine operating on dual fuel mode. Simarouba biofuel blend (B20) was prepared on volumetric basis by mixing simarouba oil and diesel in the proportion of 20% and 80% (v/v), respectively. Hydrogen gas was introduced at the flow rate of 2.67 kg/min, and EGR concentration was maintained at 30% of total air introduction. Performance, combustion and emission characteristics analysis were examined with biodiesel (B20), biodiesel with hydrogen substitution and biodiesel, hydrogen with EGR and were compared with neat diesel operation. Results indicate that BTE of the engine operating with biodiesel B20 was decreased when compared to neat diesel operation. However, introducing hydrogen along with B20 blend into the combustion chamber shows a slight increase in the BTE by 1%. NOx emission was increased to 18.13% with the introduction of hydrogen than that of base fuel (diesel) operation. With the introduction of EGR, there is a significant reduction in NOx emission due to decrease in in-cylinder temperature by 19.07%. A significant reduction in CO, CO2, and smoke emissions were also noted with the introduction of both hydrogen and EGR. The ignition delay and combustion duration were increased with the introduction of hydrogen, EGR with biodiesel than neat diesel operation. Hence, the proposed biodiesel B20 with H2 and EGR combination can be applied as an alternative fuel in CI engines.  相似文献   

13.
This paper investigated the nitrogen dioxide (NO2) emissions of a heavy-duty diesel engine operated in hydrogen (H2)-diesel dual fuel combustion mode with H2 supplemented into the intake air. Preliminary measurements using the 13-mode European Stationary Cycle (ESC) demonstrated the significant effect of H2 addition on the emissions of NO2. The detailed effects of H2 addition and engine load on NO2 emissions were examined at 1200 RPM. The addition of a small amount of H2 increased substantially the emissions of NO2 and the NO2/NOx ratio, especially at low load. Increasing the engine load was found to inhibit the enhancing effect of H2 on the conversion of NO to NO2 with the maximum NO2/NOx ratio observed at lower H2 concentration. The maximum NO2 emissions of the H2-diesel dual fuel operation were three (at 70% load) to five (at 10% load) times that of diesel operation. Further increasing the addition of H2 beyond the point with maximum NO2 emissions still produced more NO2 than for diesel-only operation. Based on the experimental data obtained, the engine load and maximum averaged bulk mixture temperature were not the main factors dominating the formation of NO2 in the H2-diesel dual fuel engine. A preliminary analysis demonstrated the significant effect of the unburned H2 on NO2 emissions. When mixed with the hot combustion product, the unburned H2 that survived the main combustion process might further oxidize to raise the HO2 levels and enhance the conversion of NO to NO2. In comparison, the changes in the combustion process including the start of combustion, combustion duration and maximum heat release rate may not contribute substantially to the increased NO2 emissions observed.  相似文献   

14.
Biomass based oxygenated fuels have been identified as possible replacement of fossil fuel due to pollutant emission reduction and decrease in over-reliance on fossil fuel energy. In this study, 4 v% water-containing ethanol was mixed with (65–90%) diesel using (5–30%) biodiesel (BD) and 1 v% butanol as stabilizer and co-solvent respectively. The fuels were tested against those of biodiesel–diesel fuel blends to investigate the effect of addition of water-containing ethanol for their energy efficiencies and pollutant emissions in a diesel-fueled engine generator. Experimental results indicated that the fuel blend mix containing 4 v% of water-containing ethanol, 1 v% butanol and 5–30 v% of biodiesel yielded stable blends after 30 days standing. BD1041 blend of fuel, which composed of 10 v% biodiesel, 4 v% of water-containing ethanol and 1 v% butanol demonstrated −0.45 to 1.6% increase in brake-specific fuel consumption (BSFC, mL kW−1 h−1) as compared to conventional diesel. The better engine performance of BD1041 was as a result of complete combustion, and lower reaction temperature based on the water cooling effect, which reduced emissions to 2.8–6.0% for NOx, 12.6–23.7% particulate matter (PM), 20.4–23.8% total polycyclic aromatic hydrocarbons (PAHs), and 30.8–42.9% total BaPeq between idle mode and 3.2 kW power output of the diesel engine generator. The study indicated that blending diesel with water-containing ethanol could achieve the goal of more green sustainability.  相似文献   

15.
The purpose of this study is to experimentally investigate the performance, combustion and pollutant emissions of a multipoint electronic fuel injection gasoline engine using methanol–gasoline blends. The results indicated that, with the increase in methanol (CH3OH) content in the blends, the maximum engine torque and power are slightly decreased, the brake specific fuel consumption is evidently increased and brake thermal efficiency remains almost identical. At low engine loads and speeds, gasoline is observed to have faster combustion velocity, but the blends are faster at high engine loads and speeds. The carbon monoxide of the blends is slightly lower, hydrocarbon is slightly higher at high engine loads and nitrogen oxide is lower for M10 at low engine loads. The emissions of formaldehyde are evidently higher with the increase in CH3OH content, but CH3OH and acetaldehyde emissions of the blends show little variation.  相似文献   

16.
Dual-fuel compression ignition (CI) engine operation with hydrogen is a promising method of using hydrogen gas in CI engines via high-cetane pilot fuel ignition. However, hydrogen dual-fuel operation with neat pilot fuels typically produce: high NOx emissions; and high combustion chamber pressure rise rates (leading to increased “Diesel knock” tendencies). While water-in-fuel emulsions have been used during normal CI engine operation to cool the charge and slow combustion rates in an effort to reduce NOx emissions, these water-in-fuel emulsions have not been tested as pilot fuels during hydrogen dual-fuel combustion. In this work two water-in-biodiesel emulsions are tested as pilot fuels during hydrogen dual-fuel operation. Hydrogen dual-fuel operation generally produces at best comparable thermal efficiencies compared with normal CI engine operation, while the emulsified biodiesel pilot fuels generally increase thermal efficiencies when compared with the neat biodiesel pilot fuel during dual-fuel operation. There is also a clear reduction in NOx emissions with emulsified pilot fuel use compared with the neat pilot fuel. The thermal efficiency increase is more apparent at higher engine speeds, while the NOx reduction is more apparent at lower speeds. This is due to two conflicting effects (exclusive to emulsified pilot fuel) that occur in tandem. The first is the cooling effect of water vapourisation on the charge, while the second is the microexplosion phenomenon which enhances fuel-air mixing. The NOx emission reduction is due to the emulsified pilot fuel lowering pressure rise rates compared with the neat pilot fuel, while the efficiency increase is due to a more homogeneous charge resulting from the violent microexplosion of the emulsified pilot fuel. Smoke, CO, HC and CO2 emissions remain comparable to neat pilot fuel tests. Overall, emulsified pilot fuels can reduce NOx emissions and increase thermal efficiencies, however not at the same instance and under different operating conditions. The general trends of reduced power output, reduced CO2 and increased water vapour emission during hydrogen dual-fuel operation (with neat pilot fuels) are also maintained.  相似文献   

17.
The effect of the physical and chemical properties of biodiesel fuels on the combustion process and pollutants formation in Direct Injection (DI) engine are investigated numerically by using multi-dimensional Computational Fluid Dynamics (CFD) simulation. In the current study, methyl butanoate (MB) and n-heptane are used as the surrogates for the biodiesel fuel and the conventional diesel fuel. Detailed kinetic chemical mechanisms for MB and n-heptane are implemented to simulate the combustion process. It is shown that the differences in the chemical properties between the biodiesel fuel and the diesel fuel affect the whole combustion process more significantly than the differences in the physical properties. While the variations of both the chemical and the physical properties between the biodiesel and diesel fuel influence the soot formation at the equivalent level, the variations in the chemical properties play a crucial role in the NO x emissions formation.  相似文献   

18.
This paper evaluates and quantifies the environmental impact from the use of some renewable fuels and fossils fuels in internal combustion engines. The following fuels are evaluated: gasoline blended with anhydrous ethyl alcohol (anhydrous ethanol), conventional diesel fuel, biodiesel in pure form and blended with diesel fuel, and natural gas. For the case of biodiesel, its complete life cycle and the closed carbon cycle (photosynthesis) were considered. The ecological efficiency concept depends on the environmental impact caused by CO2, SO2, NOx and particulate material (PM) emissions. The exhaust gases from internal combustion engines, in the case of the gasoline (blended with alcohol), biodiesel and biodiesel blended with conventional diesel, are the less polluting; on the other hand, the most polluting are those related to conventional diesel. They can cause serious problems to the environment because of their dangerous components for the human, animal and vegetable life. The resultant pollution of each one of the mentioned fuels are analyzed, considering separately CO2, SO2, NOx and particulate material (PM) emissions. As conclusion, it is possible to calculate an environmental factor that represents, qualitatively and quantitative, the emissions in internal combustion engines that are mostly used in urban transport. Biodiesel in pure form (B100) and blended with conventional diesel as fuel for engines pollute less than conventional diesel fuel. The ecological efficiency for pure biodiesel (B100) is 86.75%; for biodiesel blended with conventional diesel fuel (B20, 20% biodiesel and 80% diesel), it is 78.79%. Finally, the ecological efficiency for conventional diesel, when used in engines, is 77.34%; for gasoline, it is 82.52%, and for natural gas, it is 91.95%. All these figures considered a thermal efficiency of 30% for the internal combustion engine.  相似文献   

19.
In this study, the biodiesel produced from soybean crude oil was prepared by a method of alkaline-catalyzed transesterification. The important properties of biodiesel were compared with those of diesel. Diesel and biodiesel were used as fuels in the compression ignition engine, and its performance, emissions and combustion characteristics of the engine were analyzed. The results showed that biodiesel exhibited the similar combustion stages to that of diesel, however, biodiesel showed an earlier start of combustion. At lower engine loads, the peak cylinder pressure, the peak rate of pressure rise and the peak of heat release rate during premixed combustion phase were higher for biodiesel than for diesel. At higher engine loads, the peak cylinder pressure of biodiesel was almost similar to that of diesel, but the peak rate of pressure rise and the peak of heat release rate were lower for biodiesel. The power output of biodiesel was almost identical with that of diesel. The brake specific fuel consumption was higher for biodiesel due to its lower heating value. Biodiesel provided significant reduction in CO, HC, NOx and smoke under speed characteristic at full engine load. Based on this study, biodiesel can be used as a substitute for diesel in diesel engine.  相似文献   

20.
This paper investigated the role of microemission characteristics of a diesel engine when CeRuO2 blended with diesel is used as a fuel. The major problem areas for combustion ignition (CI) engines are emissions. A novel microemulsion-based protocol was utilized to disperse the catalysts in the diesel fuel. The fuel was prepared comprising CeO2, Ce0.95Ru0.05O2, Ce0.9Ru0.1O2, and Ce0.8Ru0.2O2 by volume (0, 5, 10, and 20 mole%) was used in a CI engine. The catalyst microemulsion system remains stable upon its addition to the diesel fuel. The results show that the CI engine works well and the power outputs are steady running with the biodiesel blends at different loads. The acquired information were studied and found a decrease in HC, CO, NOx, and soot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号