首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly ordered TiO2 nanotube arrays generate a considerable interest for hydrogen generation by an electrochemical photocell, since ordered architecture of nanotube arrays provides a unidirectional electric channel for electron's transport. Here, we report the hydrogen generation by highly ordered TiO2 nanotube arrays under actual sunlight in KOH electrolyte. The two-electrode electrochemical cell included an adjustable anode compartment capable of tracing the trajectory of the sun and a set of alkaline batteries connected with a rheostat for application of external bias. The results showed that the photocurrent responses of nanotube arrays match well with the intensity of solar irradiance on a clear summer day. Addition of ethylene glycol into KOH electrolyte as a hole scavenger enhanced the rate of hydrogen generation. A maximum photocurrent density of 31 mA/cm2 was observed at 13:30 h, by focusing the sunlight with an intensity of 113 mW/cm2 on the surface of the TiO2 nanotube arrays in 1 M KOH electrolyte with 10 vol% ethylene glycol under an applied bias of 0.5 V. The observed hydrogen generation rate was 4.4 mL/h cm2 under the focalized solar irradiance with an intensity between 104 mW/cm2 and 115 mW/cm2 from 10:00 to 14:20 h.  相似文献   

2.
Innovative TiO2/SnO2 nanofibers were fabricated via electrospinning an innovated precursor solution and used for photocatalytic H2 generation. The nanofibers exhibited greatly enhanced H2 evolution rate compared to bare TiO2 nanofiber and P25. The enhanced efficiency of the TiO2/SnO2 nanofibers was attributed to its excellent synergistic properties: (1) its good mesoporosity; (2) the red-shift of absorbance spectra to enhance light absorbance capability; (3) its long nanofibrous structure and (4) anatase TiO2 – rutile TiO2 – rutile SnO2 ternary junctions favorable for the separation of electrons and holes. Based on our experimental results, the optimum ratio of TiO2/SnO2 nanofibers with 3% Sn demonstrated the highest efficiency in H2 generation.  相似文献   

3.
TiO2 photocatalysts loaded CuS and NiS as co-catalyst were prepared by hydrothermal approach and characterized by XRD, UV–visible DRS, BET, XPS, SEM and TEM. When TiO2 was loaded MS as co-catalyst, it showed higher photocatalytic activities for splitting water into hydrogen in methanol aqueous solution under 500 W Xe lamp. Among the photocatalysts with various compositions, the maximum evolution of H2 obtained from 5 wt% CuS5 wt% NiSTiO2 sample was about 800 μmol h−1, which was increased up to about twenty-eight times than that of TiO2 alone. It was proven that CuS, NiS can act as effective dual co-catalysts to enhance the photocatalytic H2 production activity of TiO2.  相似文献   

4.
Nanostructured CuOx/TiO2 (a mixture of Cu/Cu2O/CuO) was prepared by impregnation for enhancing photocatalytic hydrogen generation from an aqueous solution containing 10 v/v% methanol. At an optimum Cu loading of 0.5 wt% and a calcination temperature of 500 °C, the CuOx was present as relatively highly dispersed (0.90), fine deposits. At Cu loadings beyond 0.5 wt% a bimodal distribution of CuOx deposits appeared with the prevalence of larger Cu deposits increasing with increasing Cu content. A corresponding decrease in H2 generation was observed as Cu loading increased which was attributed to the increasing presence of the larger CuOx deposits. The particle calcination temperature (in air) was also found to affect CuOx/TiO2 activity with an optimum performance achieved at a temperature of 300 °C. Calcining the CuOx/TiO2 at 500 °C led to greater oxidation of the CuOx deposits (∼40%) to form more Cu2+ which corresponded to an almost proportional (42%) decrease in H2 generation. The findings demonstrate the importance of Cu dispersion and oxidation state in governing photocatalytic H2 generation by CuOx/TiO2.  相似文献   

5.
In this work, we report the synthesis of cuprous oxide (Cu2O) nanoparticles modified vertically oriented aligned titanium dioxide (TiO2) nanotube arrays through wet chemical treatment of TiO2 nanotubes and their multi-functional application as enhanced photo electrochemical and hydrogen generation. The synthesized samples were characterized by X-ray diffraction, SEM, TEM, and UV–Vis spectroscopy. The structural characterization revealed that the admixed Cu2O nanoparticles on the TiO2 surface did not alter its crystalline structure of vertically oriented aligned TiO2 nanotube. The photocatalytic performance and hydrogen generation of as synthesized Cu2O nanoparticles modified aligned TiO2 nanotube was found to highly depend on the Cu2O content. The optical characterizations reveal that the presence of Cu2O nanoparticles extends its absorption into the visible region which improves the photocurrent density in comparison to pristine aligned TiO2 nanotubes electrodes due to enhanced photoactivity and better charge separation. The optimum photocurrent density and hydrogen generation rate has been found to be 3.4 mA cm?2 and 127.5 μmole cm?2 h?1 in 1 M Na2SO4 electrolyte solution under 1.5 AM solar irradiance of white light with illumination intensity of 100 mW cm?2.  相似文献   

6.
The hydrogen generation reaction in the H2O/ZnO/MnFe2O4 system was studied to clarify the possibility of whether this reaction system can be used for the two-step water splitting to convert concentrated solar heat to chemical energy of H2. At 1273 K, the mixture of ZnO and MnFe2O4 reacted with water to generate H2 gas in 60% yield. X-ray diffractometry and chemical analysis showed that 48 mol% of MnII (divalent manganese ion) in the A-site of MnFe2O4 was substituted with ZnII (divalent zinc ion) and that chemical formula of the solid product was estimated to be Zn0.58MnII0.42MnIII0.39Fe1.61O4 (MnIII: trivalent manganese ion). Its lattice constant was smaller than that of the MnFe2O4 (one of the two starting materials). From the chemical composition, the reaction mechanism of the H2 generation with this system was discussed. Since the Mn ions in the product solid after the H2 generation reaction are oxidized to Mn3+, which can readily release the O2− ions as O2 gas around 1300 K, the two-step of H2 generation and O2 releasing seem to be cyclic.  相似文献   

7.
TiO2 with exposed (001) facets were composited with CdS nanorods to construct 2D/1D heterojunction. As comparison, P25 with mainly exposed (101) facets were employed to combine with CdS nanorods. The 2D/1D heterojunction of TiO2 nanosheets and CdS nanorod displayed 3.7 times higher hydrogen generation than that of P25/CdS composites. The results indicated that TiO2 with exposed (001) facets were favorable for enhancing the photocatalytic activity of CdS via optimizing the heterojunction between TiO2 and CdS. Photoluminescence and photoelectrochemical characteristics results demonstrated that the 2D-TiO2/1D-CdS heterojunction exhibits higher separation efficiency of photoinduced carriers and superior electron transfer ability. This work exemplifies that heterojunction modification is an effective strategy to improve the efficiency of the photocatalyst composites.  相似文献   

8.
TiO2 photocatalyst with deposited CuO (CuO-TiO2) was synthesized by the impregnation method using P25 (Degussa) as support, and exhibited high photocatalytic hydrogen generation activity from methanol/water solution. A substantial hydrogen evolution rate of 10.2 ml min−1 (18,500 μmol h−1 g−1catalyst) was observed over this efficient CuO-TiO2 with optimal Cu content of 9.1 mol% from an aqueous solution containing 10 vol% methanol; this improved hydrogen generation rate is significantly higher than the reported Cu-containing TiO2, including some Pt and Pd loaded TiO2. Optimal Cu content of 9.1 mol% provided maximum active sites and allowed good light penetration in TiO2. Over this efficient CuO-TiO2, the hydrogen generation rate was accelerated by increasing the methanol concentration according to Freundlich adsorption isotherm. However, the photocatalytic hydrogen generation rate was suppressed under long time irradiation mainly due to accumulation of by-products, reduction of CuO and copper leaching, which requires further investigation.  相似文献   

9.
TiO2 thin films containing different concentrations of Ag nanoparticles have been synthesized by sol-gel method. According to UV–visible spectra, presence of an intense surface plasmon resonance peak at 490 nm of wavelength indicated formation of silver nanoparticles in the TiO2 films. Based on atomic force microscopy (AFM) analysis, the surface roughness and the effective surface ratio increased by increasing the Ag mol%. Moreover, scanning electron microscopy (SEM) images showed formation of Ag nanoparticles on the surface for the samples containing high Ag concentration. X-ray diffraction (XRD) patterns revealed that the size of Ag nanocrystals increased by increasing the Ag content in the films while the nanocrystalline size of TiO2 reduced in the presence of silver nanoparticles. Based on x-ray photoelectron spectroscopy (XPS) data, a stoichiometric chemical composition was detected for TiO2 while, Ag presented in a combination a metal/oxide states on the surface. Studying photoresponse of the samples showed that the highest photocurrent was obtained for the sample containing 1 mol% Ag. By measuring the photovoltage versus time, it was found that addition of silver nanoparticles to the TiO2 layer resulted in reduction of the transient time of the photogenerated carriers in the samples. Impedance spectroscopy determined a slight decrease in charge transfer resistance by addition of Ag to the films. Moreover, measuring the amount of hydrogen produced during water splitting reactions verified that the highest quantum yield of 9.6% was obtained for the sample with 1 mol% Ag.  相似文献   

10.
A new approach to prepare hierarchical and fibrous meso-macroporous N-doped TiO2 is attempted at room temperature without using templates by the addition of titanium isopropoxide droplets to the ammonia solution. The catalysts are thoroughly characterized by physico-chemical and spectroscopic method to explore the structural, electronic and optical properties. The photocatalytic activities of the catalyst were evaluated with hydrogen generation. NTP catalyst calcined at 400 °C (NTP-400) exhibited 602.7 μmol/3 h H2 generation from 10 vol.% methanol under visible light. The excellent photocatalytic activity for NTP-400 is attributed to the porous networks existing in our system with uniform N dispersion throughout the catalyst. The hierarchical and fibrous structures allow easy channelization of electron as in the case of nanotubes for effective surface charge transfer. Along with macroporosity, nitrogen incorporation and mesoporosity play some important roles for enhanced photoactivities.  相似文献   

11.
Herein we report the preparation, characterization and the catalytic use of the polymer-immobilized palladium catalyst supported on TiO2 (Pd-PVB-TiO2) in the hydrolysis of unstirred ammonia-borane solution. The polymer-immobilized palladium catalyst is stable enough to be isolated as solid materials and characterized by XRD, SEM, and EDX. The immobilized palladium catalyst supported on TiO2 is found highly active, isolable, and reusable in the hydrolysis of unstirred ammonia-borane even at low concentrations and temperature. The work reported here also includes the full experimental details for the collection of a wealth of kinetic data to determine the activation energy (Ea = 55.9 kJ/mol) and the effects of catalyst and substrate concentration on the rate for the hydrolysis of unstirred ammonia-borane solution. Maximum H2 generation rate of ∼642 mL H2 min−1 (g Pd)−1 and ∼4367 mL H2 min−1 (g Pd)−1 was measured by the hydrolysis of AB at 25 °C and 55 ± 0.5 °C, respectively.  相似文献   

12.
H2 production over dye-sensitized Pt/TiO2 nanoparticles with mesostructures (m-TiO2) under visible light (λ > 420 nm) was investigated by using methanol as electron donors. Experimental results indicate that three types of ruthenium(II) bipyridyl complex dyes (one binuclear Ru, two mononuclear Ru), which can be attached to Pt/m-TiO2 with different linkage modes, show different photosensitization effects due to their different coordination circumstances and physicochemical properties. The dye tightly linked with m-TiO2 has better durability but the lowest H2 evolution efficiency, whereas the loosely attached dyes possess higher H2 evolution efficiency and preferable durability. It seems that the dynamic equilibrium between the linkage of the ground state dye with TiO2 and the divorce of the oxidization state dye from the surfaces plays a crucial role in the photochemical behavior during the photocatalyst sensitization process. It is helpful to improve the H2 evolution efficiency by enhancing the electron injection and hindering the backward transfer. The binuclear Ru(II) dye shows a better photosensitization in comparison with mononuclear Ru(II) dyes due to its large molecular area, conjugation system, and “antenna effect”, which, in turn, improve the visible light harvesting and electron transfer between the dye molecules and TiO2.  相似文献   

13.
A series of Sn-modified TiO2 samples was prepared by an anhydrous grafting route and applied in the photocatalytic H2 evolution from aqueous methanol solutions. The synthesized samples were characterized by N2 physisorption, X-ray diffraction, Raman, UV–Vis reflectance and photoluminescence spectroscopy. The results revealed that the tin species were highly dispersed on the TiO2 surface and did not alter its crystalline structure. Photocatalytic results showed that Sn-grafting led to a significant improvement in the activity compared to bare TiO2 owing to the improved charge separation. The photocatalytic performance of samples was found to depend highly on the Sn content. Additionally, the influence of Rh co-modification on the photocatalytic activity of Sn-grafted TiO2 was investigated, and a synergetic effect between Sn and Rh was identified, which is attributed to the assumed electron relay among TiO2, tin species and photodeposited Rh nanoparticles.  相似文献   

14.
A photocatalyst composed of graphite-like carbon nitride (g-C3N4) and TiO2 was fabricated by a simple method to calcine the mixture of melamine and TiO2 precursor. The photocatalyst has enhanced photoactivity for hydrogen evolution from water. Characterization by XRD, FTIR, SEM and elemental analysis showed that the crystal structure and morphologies of composites were affected by the amount of melamine in the composite. The UV–Vis characterization displayed that the optical absorption range of g-C3N4/TiO2 hybrid was broadened with a synergistic effect. The photoactivity for H2 evolution was shown that the best result obtained from the composite with 67 wt% melamine has about 5 times improvement compared with bare TiO2 or pure g-C3N4. The enhanced photoactivity might be related with the favorable structure resulted from heat-treatment temperature, and the content of g-C3N4 participating in wide optical absorption, separation and transportation of electronic-holes, as well as morphology of composite.  相似文献   

15.
The fabrication and characterization of CdSe/CdS/TiO2 nanotube-array coaxial heterogeneous structure that has potential applications in photocatalytic water splitting and toxic pollutants degradation are investigated. CdSe(top)/CdS(under) double-layer is conformally deposited onto TiO2 nanotubes by successive ionic layer adsorption and reaction (SILAR) and electrochemical atomic layer deposition (ECALD), respectively, for the CdS under layer and the CdSe top layer. Such double sensitized TiO2 nanotubular photoelectrode exhibits significant enhancements in photoconversion efficiency, visible light response, and efficient hydrogen generation. The detailed synthesis process and the surface morphology, phase structure, elemental analysis, and photoelectrochemical properties of the resulting films with the CdSe/CdS/TiO2 nanotube-array coaxial heterogeneous structure are discussed. The photoconversion efficiency of 9.47% and hydrogen generation rate of 10.24 ml h−1 cm−2 were observed. Both values are a 7-fold enhancement compared with that of the pure TiO2 nanotube. The as-prepared photoelectrode presents potential application for industrialized photocatalytic hydrogen generation in the future.  相似文献   

16.
Photo-assisted hydrogen generation studies of platinum loaded titanium (IV) oxide nanotubes suspended in ethanol–water mixture were carried out at room temperature. The TiO2 nanotubes synthesized by rapid breakdown anodization technique were loaded with Pt nanoparticles by chemical reduction of aqueous chloroplatinic acid solution using sodium borohydride. The chemisorption (active) surface area of the synthesized nanocomposites for hydrogen was measured by pulse chemisorption method using temperature programmed desorption reduction oxidation equipment and found to decrease with increase in platinum loading in the range 1–10 wt%. The platinum supported nanotube composites were characterized for phase and morphology by XRD, TEM and SEM. The hydrogen generated by the photocatalytic reduction of water from water–ethanol mixture at different wavelengths of incident light, using the Pt-TiO2 nanocomposite photocatalyst, was determined by using a proton exchange membrane based hydrogen meter. The highest hydrogen generation efficiency was observed at 1–2.5 wt% of Pt loading. The maximum photocatalytic hydrogen generation of 0.03 mol/h/g of Pt-TiO2 was observed with a 64 W UV light source (λ = 254 nm). The photoluminescence property of the Pt loaded TiO2 has been correlated with the hydrogen generation efficiency and the reaction mechanism briefly discussed.  相似文献   

17.
CuCr2O4/TiO2 heterojunction has been successfully synthesized via a facile citric acid (CA)-assisted sol-gel method. Techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectrum (UV-vis DRS) have been employed to characterize the as-synthesized nanocomposites. Furthermore, photocatalytic activities of the as-obtained nanocomposites have been evaluated based on the H2 evolution from oxalic acid solution under simulated sunlight irradiation. Factors such as CuCr2O4 to TiO2 molar ratio in the composites, calcination temperature, photocatalyst mass concentration, and initial oxalic acid concentration affecting the photocatalytic hydrogen producing have been studied in detail. The results showed that the nanocomposite of CuCr2O4/TiO2 is more efficient than their single part of CuCr2O4 or TiO2 in producing hydrogen. The optimized composition of the nanocomposites has been found to be CuCr2O4·0.7TiO2. And the optimized calcination temperature and photocatalyst mass concentration are 500 °C and 0.8 g l−1, respectively. The influence of initial oxalic acid concentration is consistent with the Langmuir model.  相似文献   

18.
A facile and green one-step method was used to prepare titanate nanotube/graphene (TNT/GR) photocatalysts via an alkaline hydrothermal process. The as-prepared samples were characterized by X-ray diffraction, transmission electron microscopy, Raman spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy and photoluminescence emission spectroscopy. The photocatalytic performance was evaluated by H2 generation from water splitting under Xe-lamp illumination. A significantly enhanced photocatalytic activity for H2 evolution (12.1 μmol/h) was obtained over the compostion-optimized TNT/GR composite (with 1.0 wt% GR), two times higher than that of pure TNT (4.0 μmol/h). During hydrothermal reaction, the reduction of graphene oxide (GO) into GR without using any reducing agents and the formation of 1-D TNT were achieved simultaneously, which resulted in the direct growth of well-defined TNTs uniformly distributed on GR substrates.  相似文献   

19.
Carbon-incorporated titanium dioxide (TiO2) photoelectrodes with different structural features were prepared via rapid-anodic oxidation under different electrical potentials and exposure times. The interstitial carbon arising from the pyrogenation of ethylene glycol electrolytes induced a new C2p occupied state at the bottom of the conduction band, which lowered the band gap energy to ∼2.3 eV and consequently enabled the visible-light responsiveness. Photoelectrodes with nanotubular structures provided higher photoconversion efficiency (η) and hydrogen (H2) evolution capability than those with irregular structures. The increased aspect ratio, wall thickness, and pore size of the nanotube arrays contributed to η through greater photon excitation and penetration. However, this contribution is limited by the high recombination of the charge carriers at ultra-high aspect ratios. Photoelectrodes with a nanotube length of ∼19.5 μm, pore size of ∼103 nm, wall thickness of ∼17 nm, and aspect ratio of ∼142.5 exhibited remarkable capability to generate H2 at an evolution rate of up to ∼508.3 μL min−1 cm−2 and η of ∼2.3%.  相似文献   

20.
Quality of interfaces is a key factor determining photoexcited charge transfer efficiency, and in turn photocatalytic performance of heterostructure photocatalysts. In this paper, we demonstrated CdS-MoS2/RGO-E (RGO-E: reduced graphene oxide modified by ethylenediamine) nanohybrid synthesized by using a facile one-pot solvethermal method in ethylenediamine, with CdS nanoparticles and MoS2 nanosheets intimately growing on the surface of RGO. This unique high quality heterostructure facilitates charge separation and transportation, and thus effectively suppressing charge recombination. As a result, the CdS-MoS2/RGO-E exhibits a state-of-the-art H2 evolution rate of 36.7 mmol g?1 h?1 and an apparent quantum yield of 30.5% at 420 nm, which is the advanced performance among all the same-type photocatalysts (see Table S1), and far exceeding that of bare CdS by higher than 104 times. This synthesis strategy gives an inspiration for the synthesis of other compound catalysts, and higher performance photocatalyst may be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号