首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pre-chamber spark ignition system is a promising advanced ignition system adopted for lean burn spark ignition engines as it enables stable combustion and enhances engine efficiency. The performance of the PCSI system is governed by the turbulent flame jet ejected from the pre-chamber, which is influenced by the pre-chamber geometrical parameters and the operating conditions. Hence, the current study aims to understand the effects of pre-chamber volume, nozzle hole diameter, equivalence ratio, and initial chamber pressure on the combustion and flame jet characteristics of hydrogen-air mixture in a passive PCSI system. Pre-chamber with different nozzle hole diameters (1 mm, 2 mm, 3 mm, and 4 mm) and volumes (2%, 4%, and 6% of the engine clearance volume) were selected and manufactured in-house. The experimental investigation of these pre-chamber configurations was carried out in a constant-volume combustion chamber with optical access. The flame development process was captured using a high-speed camera at a rate of 20000 fps, and the images were processed in MATLAB to obtain quantitative data. The combustion characteristics of hydrogen-air mixtures with the PCSI system improved when compared to the conventional SI system; however, the improvement was more significant for ultra-lean mixtures. Early start of combustion and shorter combustion duration were observed for PCSI – D2 and PCSI – D3 configurations, respectively and improved combustion and flame jet characteristics were also noted for these configurations. With the increase in pre-chamber volume, ignition energy associated with the flame jet increases, which reduces the combustion duration and the ignition lag.  相似文献   

2.
Propagation characteristics of hydrogen-air deflagration need to be understood for an accurate risk assessment. Especially, flame propagation velocity is one of the most important factors. Propagation velocity of outwardly propagating flame has been estimated from burning velocity of a flat flame considering influence of thermal expansion at a flame front; however, this conventional method is not enough to estimate an actual propagation velocity because flame propagation is accelerated owing to cellular flame front caused by intrinsic instability in hydrogen-air deflagration. Therefore, it is important to understand the dynamic propagation characteristics of hydrogen-air deflagration. We performed explosion tests in a closed chamber which has 300 mm diameter windows and observed flame propagation phenomena by using Schlieren photography. In the explosion experiments, hydrogen-air mixtures were ignited at atmospheric pressure and room temperature and in the range of equivalence ratio from 0.2 to 1.0. Analyzing the obtained Schlieren images, flame radius and flame propagation velocity were measured. As the result, cellular flame fronts formed and flame propagations of hydrogen–air mixture were accelerated at the all equivalence ratios. In the case of equivalent ratio φ = 0.2, a flame floated up and could not propagate downward because the influence of buoyancy exceeded a laminar burning velocity. Based upon these propagation characteristics, a favorable estimation method of flame propagation velocity including influence of flame acceleration was proposed. Moreover, the influence of intrinsic instability on propagation characteristics was elucidated.  相似文献   

3.
Two multi-perforated premixed burners, designed for natural gas, are fueled with increasing hydrogen content to assess the limits of H2 substitution and investigate potential risks associated to it. The burners feature a different design, which affects flame stabilization and heat exchange between the fresh mixture and the hot burner walls. First, results are presented by means of stability maps that were collected at constant power and over a wide range of equivalence ratio, from pure methane-air to pure hydrogen-air mixtures. The impact of hydrogen addition on blow-off and flashback limits is then analyzed. On one side, it is observed that hydrogen addition increases blow off resistance, extending the operating range towards ultra-lean conditions. On the other side, hydrogen raises the thermal load on the burner favoring flashback. It is shown that the competition between the bulk velocity at the burner outlet and the laminar burning velocity is not a reliable parameter to predict flashback occurrence, while the thermal state of the burner represents a determining factor. An analysis of the thermal transient reveals a strict correspondence between the onset of flashback for a given mixture composition and the burner surface temperature. Results highlight the challenges linked to the design of fuel-flexible systems, pointing out practical limits of H2 substitution in burners designed for operation with natural gas.  相似文献   

4.
Hydrogen is a promising fuel and is expected to replace hydrocarbon fuels for its significant potentials to reduce the pollutants and greenhouse gases. It is very important to investigate Minimum ignition energy (MIE) on safety standards and ignition process of hydrogen-air mixtures. Even though the formation of flame kernels in quiescent hydrogen-air mixtures has been researched numerically and experimentally, the details of ignition mechanism have never been satisfactorily explained. In this study, the spark ignition of hydrogen-air mixture is investigated by using detailed chemical kinetics and considering the heat loss to the electrode. The purpose of this study is emphasized in the effects of the energy supply procedure, the radius of the spark channel, electrode size and electrode gap distance on the MIE. In addition, the effects of mixture temperature, electrode gap distance and electrode size on relationship between the equivalence ratio and the MIE are examined.  相似文献   

5.
The ignition and combustion of hydrogen in air is considered more hazardous compared to other fuels due to the lower minimum ignition energy (MIE) and the wider flammability range. Spark discharge is the most common type of electrostatic ignition hazard. There is a need in validated safety engineering tools to accurately calculate MIE in a wide range of temperatures from atmospheric to cryogenic which are characteristic for hydrogen systems and infrastructure. Current MIE assessment methodologies rely on the availability of experimental data on quenching distance and/or laminar burning velocity and thus are mostly empirical correlations. This prevents their application beyond the limited number of experimental data, i.e. to arbitrary composition of the hydrogen-air mixture at arbitrary temperatures including cryogenic. This work aims at the development of a model able to accurately predict MIE for hydrogen-air mixtures with arbitrary initial composition and temperature. Cantera and Chemkin software are used to calculate the properties and unstretched laminar burning velocity of hydrogen-air mixtures. The flame thickness is found to well represent the critical flame kernel in the suggested model. The model is validated against experimental data on MIE for mixtures at ambient and cryogenic (down to 123 K) temperatures. Results show that the effect of flame stretch and preferential diffusion shall be considered to accurately predict MIE for lean hydrogen-air mixtures, which was not possible for previous models.  相似文献   

6.
7.
In this study, the flame propagation behavior and the intensity of the blast wave by an accidental explosion of a hydrogen-air mixture in an open space were measured simultaneously using the soap bubble method. The results show that the flame in lean hydrogen-air mixtures propagated by spontaneous flame instabilities. The flame in rich hydrogen-air mixtures propagated smoothly in the early stage, and was intensively wrinkled and accelerated in the later stage by different type of instabilities. The flame wrinkling in the later stage of rich hydrogen flame is generated when the flame approaches the non-uniformity transition region of concentration distribution. The intensity of the blast wave of hydrogen/air mixtures is strongly affected by the acceleration of the flame propagation by these spontaneous flame disturbances.  相似文献   

8.
Sub-critical burning of lean hydrogen-air mixtures in micro gaps between two quartz disks was investigated both experimentally and numerically. Stationary regimes for different compositions and gap sizes were found when sub-critical flames remained in a stable position relative to the disk surfaces. The burning velocity in the micro gaps was observed to reach values much larger than the laminar burning velocity. A reaction-diffusion numerical model was proposed to corroborate experimental results. Different factors, such as boundary conditions for velocity, irradiation of the disk surfaces contacting the gas, and an increase in the chemical reaction rate near disk surfaces were modeled numerically in order to explain the increase in burning velocities. The best correlation between the numerical results and experimental data was observed in the scenario proposing as increased chemical reaction rate near the disk surfaces. Numerical simulations also showed that for large flame front velocities and wider sub-critical gaps, the flame front becomes unstable. The reason for this instability is the asynchronization of the combustion near the disk surfaces and the subsequent turbulization of the flame.  相似文献   

9.
Flame stability in an annular heat recirculating microcombustor burning stoichiometric hydrogen-air mixture was explored by means of a rigorous thermal analysis. The analysis is based on computational fluid dynamics model of reacting fluid flow accounting for interactions in flow, species, and conjugate thermal field in fluid and solid. Consideration of thermal diffusion effects in the model was necessary for realistic predictions in all the cases. Flame stability under different inlet velocity and wall thermal conductivities was studied. Results showed that a stable flame could stabilize in this combustor in the velocity range of 3-35 m/s. However, the upper stability limit widened for lower wall thermal conductivity. Low velocity flashback and high velocity blowout bounded the stability region with respect to inlet velocity for lower thermal conductivity wall material. Lower flame stability limit was influenced by thermal design of the microcombustor that prevented flame extinction and ability of flame to stabilize at the heated wall even at higher inlet velocity controlled the upper flame stability limit. Flame established well within the combustor for the lowest wall thermal conductivity without blowout and approached flashback for the highest conductivity when wall thermal conductivity was varied at constant inlet velocity. Relative importance of axial and radial wall heat conduction in flame stabilization was explored at the extremes of operating conditions. Both the components played equally important roles in flame stabilization by influencing heat recirculation and losses within the microcombustor. A suitable combination of structural materials could provide a stable flame with high surface temperatures in a lightweight system.  相似文献   

10.
The initial temperature distribution of the combustible mixture has a significant effect on the measurement accuracy of the laminar burning velocity using the outwardly propagating spherical flame method. In the present study, the initial temperature fields inside the constant-volume combustion vessel were obtained by different arrangement methods of heater. Further, the effects of the non-uniformity of initial temperature field on the propagation processes of two-dimensional premixed H2-air laminar flames were numerically studied. The results show that when the initial temperature field inside the vessel heated by heating tapes reaches a stable state, the temperature of H2-air mixture tends to descend first and then rise along the gravity direction, which indicates that the non-uniformity of the temperature field increases with the actual delivered power. Compared with the uniform initial temperature field, the maximum relative deviation of laminar burning velocity of H2-air mixture obtained in the non-uniform initial temperature field is 7% when the vessel is heated by heating tapes under the power of 669 W. However, the non-uniformity of the initial temperature field of the H2-air mixture in the vessel obviously decreases and the maximum relative deviation of laminar burning velocity is only 2% when a simulated evenly arranged heater is employed to heat the vessel. Consequently, it is quite necessary to evaluate the non-uniformity of the initial temperature field inside the constant-volume combustion vessel before using the outwardly propagating spherical flame method to determine the laminar burning velocity.  相似文献   

11.
This paper reports on the cellular structure formation on the front of a spherically expanding hydrogen-air flame. The hydrogen-air mixture was considered with hydrogen concentration in experiments from 10 to 50 vol%. This paper aims to analyze cell cascade formation, which occurs due to diffusional-thermal and hydrodynamics instabilities. Using experimentally obtained schlieren images, the flame front radius as the function of an angle was obtained. The cell amplitude dependencies on the normalized time were also analyzed. The values corresponding to cell splitting were obtained by the discrete Fourier transform method. The cell split criterion, which allows taking into account the known instability mechanisms, was formulated.  相似文献   

12.
Evolving technology and a reoccurring energy crisis creates a continued investigation into the search for sustainable and clean-burning renewable fuels. One possibility is hydrogen that has many desirable qualities such as a low flammability limit promoting ultra-lean combustion, high laminar flame speed for increased thermal efficiency and low emissions. However, past research discovered certain limiting factors in its use such as pre-ignition in spark ignition engines and inability to work as a singular fuel in compression ignition engines. To offset these issues, this work documents manifold injection of a hydrogen/carbon monoxide mixture in a dual-fuel methodology with biodiesel. While carbon monoxide does degrade some of the desirable properties of hydrogen, it acts partially like a diluent to restrict pre-ignition. The result of this mixture addition allows the engine to maintain power while reducing biodiesel fuel consumption with a minimal NOx emissions increase.  相似文献   

13.
The report deals with the investigation of explosion safety parameters of hydrogen-air mixtures in a 17.17 L cylindrical closed-vessel with different concentrations, obstacles, and ignition locations. The experimental data including the maximum explosion pressure, laminar burning velocity, and corresponding flame radius were confirmed by using GASEQ code and theoretical calculation, respectively. The report shows the orifice plate reduced the maximum explosion pressure of the low-concentration hydrogen (φ<20% v/v), while the maximum explosion pressure of high-concentration hydrogen (φ>20% v/v) was increased, and the oscillation of the explosion pressure in the closed-vessel was obvious. The effect of the ignition location on the maximum explosion pressure was related to the interaction between the flame instability and the orifice plate for the φ = 30% v/v hydrogen-air mixture.  相似文献   

14.
In this research, a mathematical model is performed to analyze the structure of flame propagation through a two-phase mixture consisting of organic fuel particles and air. In contrast to previous analytical studies, thermal radiation effect is taken into consideration, which has not been attempted before. In order to simulate of the dust combustion phenomenon, it is assumed that the flame structure consists of four zones: preheat, vaporization, reaction and post flame (burned). Furthermore, radiative heat transfer equation is employed to describe the thermal radiation exchanged between these zones. The obtained results show that the induced thermal radiation from flame interface into the preheat and vaporization zones plays a significant role in the improvement of vaporization process and burning velocity of organic dust mixture, compared with the case in which the thermal radiation factor is neglected. According to present results, flame structure variables such as the burning velocity, mixture temperature, mass fraction of volatile fuel particles and gaseous fuel mass fraction strongly depend on radiative heat transfer. These predictions have reasonable agreement with published experimental data.  相似文献   

15.
In this study, combustion characteristics of various biogas/air mixtures with hydrogen addition at elevated temperatures were experimentally investigated using bunsen burner method. Methane, CH4, was diluted with different concentrations of carbon dioxide, CO2, 30 to 40% by volume, to prepare the biogas for testing. It is followed by the hydrogen, H2, enrichment within the range of 0 to 40% by volume and the temperature elevation of unburned gas till 440 K. Blowoff velocities were measured by lowering the jet velocity until a premixed flame could be stabilized at the nozzle exit, while laminar burning velocities were calculated by analyzing the shape of the directly captured premixed bunsen flames. The results showed that hydrogen had a positive effect on the blowoff velocity for all three fuel samples. Nonlinear growth of the blowoff velocity with hydrogen addition was associated to the dominance of methane-inhibited hydrogen combustion process. It was also observed that the increase in the initial temperature of the unburned mixture led to a linear increase of the blowoff velocity. Moreover, specific changes in flame structure such as flame height, standoff distance, and the existence of tip opening were attributed to the change in the blowoff velocity. The effect of CO2 content in the mixture was examined with regards to laminar burning velocity for all compositions. The outcome of the experiment showed that the biogas mixture with higher content of CO2 possessed lower values of laminar burning velocity over the wide range of equivalence ratios. A reduced GRI-Mech 3.0 was used to simulate the combustion of biogas/air mixtures with different compositions using ANSYS Fluent. The numerically simulated stable conical flames were compared with the experimental flames, in terms of flame structure, showing that the reduced GRI-Mech 3.0 was suitable for modeling the combustion of biogas/air mixtures.  相似文献   

16.
Liquid-fuel combustion in a narrow tube using an electrospray technique   总被引:1,自引:0,他引:1  
This study experimentally investigated the possibility of stable burning conditions of liquid fuel inside a narrow tube using an electrospray technique without external heating or a catalyst. The mixture of 30% volume ethanol and 70% volume n-heptane was used as a liquid fuel atomized by the electrospray method with single capillary-ring extractor-mesh collector electrode configuration placed inside a quartz glass tube with an inner diameter of 3.5 mm. A stable flame was established inside the narrow tube without wall wetting within a certain range of equivalence ratio for a fuel flow rate of 1 mL/h. This study confirmed that the role of the mesh as the collector was very important in establishing a stable flame inside the narrow tube. If the fuel flow rate was sufficiently large, wall wetting occurred and eventually stable burning stopped.  相似文献   

17.
Experimental and analytical study of burning hydrogen-air mixtures with 12, 13, and 15 vol% hydrogen concentrations in channels with central and peripheral ignition was performed. Flame propagation speeds were determined by shadow and infrared high-speed imaging in the transverse and longitudinal directions, respectively. It was found that the increase in the flame front speed during the peripheral ignition reaches up to 1.7 times compared to the central ignition depending on mixture content. The pressure growth rate was examined in a closed channel. It was estimated that the time to reach a maximum pressure is 1.1 times less in the case or peripheral ignition than the central one. An analytical model was formed to describe the dynamics of the flame front in both cases. The model of a “reversed finger-flame” generated by a peripheral ignition was presented. The obtained results could be used in designing hydrogen-fueled combustible engines with the reduced knock-effect.  相似文献   

18.
The behaviors and shape changes of premixed hydrogen-air flames at various equivalence ratios propagating in half-open and closed horizontal ducts are experimentally investigated using high-speed schlieren imaging and pressure sensors. The study shows that the premixed hydrogen-air flame undergoes more complex shape changes and exhibits more distinct characteristics than that of other gaseous fuels. One of the outstanding findings is that obvious distortion happens to tulip flame after its full formation when equivalence ratio ranges from 0.84 to 4.22 in the closed duct. The salient tulip flame distortions are specially scrutinized and distinguished from the classical tulip collapse and disappearance. The dynamics of distorting tulip flame is different from that of classical tulip flame. The normal tulip flame can be reproduced after the first distortion followed by another distortion. The initiation of flame shape changes coincides with the deceleration both of pressure rise and flame front speed for flames with tulip distortions. And the formation and dynamics of tulip/distorting tulip flames depend on the mixture composition.  相似文献   

19.
The upstream interaction of twin premixed hydrogen-air flames in 2-D turbulence is studied using direct numerical simulations with detailed chemistry. The primary objective is to determine the effect of flame stretch on the overall burning rate during various stages of the interaction. Preferential diffusion effects are accounted for by varying the equivalence ratio from symmetric rich-rich to lean-lean interactions. The results show that the local flame front response to turbulence is consistent with previous understanding of laminar premixed flames, in that rich premixed flames become intensified in regions of negative strain or curvature, while the opposite response is found for lean premixed flames. The overall burning rate history with respect to the surface density variation is found to depend on the mixture condition; the consumption rate enhancement advances (follows) the surface enhancement for the rich-rich (lean-lean) case. For the lean-lean case, a self-turbulization mechanism results in a large positive skewness in the area-weighted mean tangential strain statistics. Because of the statistical dominance of positive stretch on the flame surface, the lean-lean case results in a significantly larger burning enhancement (over a twofold increase) in addition to the surface density production. For the case of rich-rich interaction, the abundance in hydrogen species results in an instantaneous overshoot of the radical pool in the post-flame region, resulting in an additional “burst” in the reactant consumption rate history, suggesting its potential impact on the pollutant formation process.  相似文献   

20.
PIV-measurements of reactant flow in hydrogen-air explosions   总被引:1,自引:0,他引:1  
The paper present the work on PIV-measurements of reactant flow velocity in front of propagating flames in hydrogen-air explosions. The experiments was performed with hydrogen-air mixture at atmospheric pressure and room temperature. The experimental rig was a square channel with 45 × 20 mm2 cross section, 300 mm long with a single cylindrical obstacle of blockage ratio 1/3. The equipment used for the PIV-measurements was a Firefly diode laser from Oxford lasers, Photron SA-Z high-speed camera and a particle seeder producing 1 μm droplets of water. The gas concentrations used in the experiments was 14 and 17 vol% hydrogen in air. The resulting explosion can be characterized as slow since the maximum flow velocity of the reactants was 13 m/s in the 14% mixture and 23 m/s in the 17% mixture. The maximum flow velocities was measured during the flame-vortex interaction and at two obstacle diameters behind the obstacle. The flame-vortex interaction contributed to the flame acceleration by increasing the overall reaction rate and the flow velocity. The flame area as a function of position is the same for both concentrations as the flame passes the obstacle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号