首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermodynamically and kinetically stable regions of the temperature–H2 pressure phase boundaries for the ZrCoH system were established using the Temperature-Concentration-Isobar (TCI) method. Based on this, the enthalpy change and entropy change values of dehydrogenation and disproportionation reactions were successfully obtained. The average enthalpy change (ΔH) and entropy change (ΔS) estimated from the phase boundaries for dehydrogenation of ZrCoH3 to ZrCo are respectively 103.07 kJ mol?1H2 and 148.85 J mol?1 H2 K?1, which are well agreement with the data reported in literature. The average ΔH and ΔS were estimated to be ?120.91 kJ mol?1H2 and -149.32 J mol?1 H2 K?1 for the disproportionation of ZrCoH3, whereas the ΔH and ΔS were calculated to be ?84.6 kJ mol?1H2 and -92.29 J mol?1 H2 K?1 for disproportionation of ZrCo. In addition, it was found from the established phase boundaries that the anti-disproportionation property of ZrCo alloy can be enhanced if the phase boundaries of hydrogenation/dehydrogenation are far away from the phase boundaries of disproportionation by adjusting the thermodynamics. Meanwhile, it is possible to keep ZrCo away from disproportionation even at high temperature of 650 °C under hydrogen atmosphere, if the temperature-H2 pressure trajectory is carefully controlled without crossing the phase boundaries of disproportionation. Therefore, the established phase boundaries can be used as a guide to the eye avoiding disproportionation and improving the anti-disproportionation property of ZrCo alloy.  相似文献   

2.
In this paper, a three-dimensional (3D) hydrogen desorption model is applied to the thin double layered annulus ZrCo based hydrogen storage bed to precisely study the hydrogen desorption reaction and resultant heat and mass transport phenomena inside the bed. The 3D hydrogen desorption simulations are carried out and calculated results are compared with the experimental data measured by Kang et al. [1]. The present model reasonably captures the bed temperature evolution behavior and the hydrogen discharging time for 90% desorption. In addition, the thin double layered annulus metal hydride bed (MHB) design is numerically evaluated by comparing with a simple cylindrical MHB. More uniform distributions in the bed temperature and H/M atomic ratio and resultant superior hydrogen desorption performance are achieved with the thin double layered annulus bed owing to its high external surface to volume ratio and thus more efficient heating. This numerical study indicates that efficient design of the metal hydride bed is key to achieve rapid hydrogen discharging performance and the present 3D hydrogen desorption model is a useful tool for the optimization of bed design and operating conditions.  相似文献   

3.
Considering the thermodynamic stability of various hydrides, a strategy has been employed to improve the hydrogen isotope storage properties of ZrCo alloy which involves partial co-substitution of Zr with Ti and Nb. Herein, alloys of composition Zr0.8Ti0.2-xNbxCo (x = 0.05, 0.1, 0.15) is prepared, characterized and the effect of Ti and Nb doping on hydrogen storage properties of parent ZrCo alloy is investigated. XRD analysis confirmed the formation of desired pure cubic phase of all the synthesized alloys similar to ZrCo phase. The presence of a single plateau in hydrogen desorption pressure-composition isotherms confirms single step hydrogen absorption-desorption behavior in Zr0.8Ti0.2-xNbxCo alloys. The equilibrium pressure of hydrogen desorption decreases marginally with increasing Nb content in Zr0.8Ti0.2-xNbxCo alloys which is further corroborated by differential scanning calorimetry measurements. Investigation of hydrogen induced disproportionation behavior in ITER-simulating condition revealed substantial impact of co-substitution of Ti and Nb on anti-disproportionation properties of ZrCo alloy. These remarkable properties make the Ti and Nb co-substituted quaternary alloys a desirable material for hydrogen isotope storage and delivery application.  相似文献   

4.
In this paper, a three-dimensional (3-D) hydrogen absorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. [1]. In their experiment, the monitored hydrogen tank pressure decreased with time due to continuous hydrogen supply to a ZrCo hydride bed; hence, the effect of decreasing hydrogen feed pressure is considered for simulations. The equilibrium pressure expression for hydrogen absorption on ZrCo is derived as a function of temperature and the H/M atomic ratio based on the pressure–composition isotherm data given by Konishi et al. [2]. In general, the calculated results agreed well with the temperature evolution data, and the hydrogen charging time for 99% absorption was accurately captured by the model. In addition, detailed simulation results, including multidimensional contours, clearly elucidate the hydrogen absorption behavior of the thin double-layered ZrCo MHB.  相似文献   

5.
The effects of Pd coating with different deposition concentration (PdCl2 0.2 g L?1, 0.6 g L?1, 1.0 g L?1) on the surface morphology, microstructure and hydrogen storage performances of ZrCo alloy have been investigated. Results show that spherical Pd particles have been deposited on the surface of ZrCo alloy successfully, which transfer from sparse arrangement to continuous and compact film with increasing deposition concentration of PdCl2. The hydriding kinetic property of all Pd coated alloys is improved compared with the bare alloy, which is due to the catalyst effect of Pd coating. The hydriding rate of the samples firstly increases and then decreases with increasing deposition concentration, which is closely related to the surface morphology and thickness of Pd coating. The hydriding kinetic property of the samples is greatly improved after 5 cycles, although Pd particles on the alloy surface peel off to some extent. This phenomenon indicates that the accumulated fresh surface during cycling makes a greater contribution to the improved hydriding kinetic property and the catalyst effect of Pd coating is weakened during cycling.  相似文献   

6.
Cycling stability of ZrCo–H system is extremely important for the long-term operation of the storage and delivery system (SDS) in ITER. Herein, the optimal cycling operation parameters were systematically investigated. It indicates that various parameters, such as hydrogen pressure, temperature, composition, and stoichiometric ratio of H atoms, will all affect the cycling performance of the ZrCo–H system significantly. The decline rate of the hydrogen capacity of the ZrCo–H system is positively correlated with the hydrogen pressure. The experimental result shows that 54% of hydrogen capacity decreases under 28.1 kPa hydrogen pressure, while 30% of attenuation is obtained when the pressure is decreased to 8.1 kPa after 14 cycles. In terms of temperature, the lowest cycling attenuation can be maintained at about 25% after 14 cycles when the dehydrogenation temperature at 550 °C. The effects of doping elements, Hf and Ti, on the cycling stability of ZrCo–H system are also compared. The Zr0.8Ti0.2Co sample exhibits higher cycling capacity than ZrCo and Zr0.8Hf0.2Co samples. The extremely excellent behavior can be achieved when all ZrCo alloys are continuously evacuated during the hydrogen release process, and the attenuation of only 1.1% is observed for Zr0.8Ti0.2Co after 15 cycles. Besides, the cycling attenuation is related to residual stoichiometric ratio of H atoms in ZrCo alloy during the cycling test. When the residual H atoms proportion exceeds 1 in ZrCo during dehydrogenation, hydrogen cycling capacity hardly fades. The XRD results reveal that the disproportionation of ZrCo is directly associated with the cycling degradation, yielding the more stable products of ZrCo2 and ZrH2, However, the disproportionation can be avoided during the cycling process by controlling the stoichiometric ratio of H atoms remained in ZrCo above 1. This study demonstrates that the cycling performance of ZrCo can be substantially improved when the operation parameters are properly adjusted, which provides a significant important reference for durable running of SDS in ITER.  相似文献   

7.
This paper investigates the decoration of superalkali NLi4 on graphene and the hydrogen storage properties by using first principles calculations. The results show that the NLi4 units can be stably anchored on graphene while the Li atoms are strongly bound together in the superalkali clusters. Decoration using the superalkali clusters not only solve the aggregation of metal atoms, it also provide more adsorption sites for hydrogen. Each NLi4 unit can adsorb up to 10 H2 molecules, and the NLi4 decorated graphene can reach a hydrogen storage capacity 10.75 wt% with an average adsorption energy ?0.21 eV/H2. We also compute the zero-point energies and the entropy change upon adsorption based on the harmonic frequencies. After considering the entropy effect, the adsorption strengths fall in the ideal window for reversible hydrogen storage at ambient temperatures. So NLi4 decorated graphene can be promising hydrogen storage material with high reversible storage capacities.  相似文献   

8.
    
Fast heat and mass delivery with high cycling stability of the core component, hydrogen storage bed, in SDS are essential for the operation of the future tritium factory in ITER project. However, the aforementioned properties are still perplexing in large-capacity ZrCo bed, especially for that with secondary containment structure required by the actual tritium operation in the future. Herein, the performance including heating, cycling and cooling with two different size ZrCo beds (loading of ZrCo are 200 g and 2000 g respectively) were systematically studied. The experimental data shows that the maximum heating ability of the middle-size/full-scale storage bed are both about 10 °C/min, and the maximum hydrogen absorption capacity of these ZrCo beds are 44.6 L/405.5 L, respectively. Besides, hydrogen pressure and hydrogen retention during the following desorption can affect the cycling performance of the ZrCo bed. The use of transfer pump can reduce the pressure of the bed during the hydrogen desorption process (operated at 500 °C), which inhibits the disproportionation reaction of the ZrCo alloy. However, the degree of hydrogen pressure reduction in two the types of ZrCo bed are different. As a result, the cycling capacity of the middle-size bed (93.4%, lower hydrogen pressure) is higher than the full-scale bed (68.7%, higher hydrogen pressure) after 10 cycles. When the transfer pump was not used and operated at lower temperature (350 °C), the beds cannot release hydrogen completely, and partial hydrogen atoms are retained in the ZrCo alloy. The middle-size bed still maintains a hydrogen storage capacity of 94.5% after 10 cycles, while 75.9% of the hydrogen storage capacity remained for the full-scale bed. Therefore, the increase of hydrogen surplus in ZrCo alloy is helpful to improve its cycling stability. At last, the cooling performances of the beds under 10 different cooling methods were studied. Among the cooling methods, the best cooling rate was achieved by filling nitrogen in the secondary containment cavity and flowing water passing through the cooling circuit of the bed. This work will provide a crucial reference for the design and optimization of the subsequent operation technology of SDS in ITER.  相似文献   

9.
Diffraction-based methods offer unique advantages for elucidating the pathways by which materials absorb and desorb hydrogen, especially when a phase change or the formation of new compounds is involved. In this case, the hydriding reaction may be followed via the changing crystallography of the phases involved in response to a change in temperature or hydrogen pressure. By using a fast diffractometer, the reaction kinetics may also be correlated to environmental conditions and the degree of completion of the reaction. In this paper we consider and model quantitatively the essential elements of a successful in-situ diffraction experiment with neutrons or X-rays under hydrogen pressures up to several kilobars: a gas manifold to accurately measure hydrogen uptake; a pressure cell designed for maximum detected intensity; means to exclude scattering arising in the cell as much as possible; methodology to correct for attenuation and subtract background intensity from the cell and environment.  相似文献   

10.
TiFe is a very interesting material for hydrogen storage in the solid state, due to its hydrogen capacity of 1.9 wt % and to the fact it can be absorb/desorb hydrogen at room temperature. However, the TiFe produced by casting does not absorb hydrogen, unless a procedure called activation is applied, which is based on a repetition of several thermal cycles. This study evaluates the effects of a mechanical activation route for the TiFe intermetallic compound, namely, cold rolling (CR) under inert atmosphere. Stoichiometric TiFe was prepared from elementary powders by arc melting. Ingot was grinded and then cold rolled for 20 and 40 passes under argon inside a glove box, with moisture and oxygen contents below 0.1 ppm. Cold rolled samples consisted of two parts: powder particles and thin cracked flakes. The results showed that mechanically activated samples by CR exhibited rapid absorption of hydrogen at room temperature, without using a thermal activation process. In general, the average storage capacity of hydrogen was 1.4 wt% H2 for the first absorption, regardless of the number of passes for both flake and powder samples.  相似文献   

11.
There has been rapidly growing interest for materials suitable to store hydrogen in solid state for transportation of hydrogen that requires materials with high volumetric and gravimetric storage capacity. B-N compounds such as ammonia-triborane, ammonia-borane and amine-borane adducts are well suited for this purpose due to their light weight, high gravimetric hydrogen storage capacity and inclination for bearing protic (N-H) and hydridic (B-H) hydrogens. In addition to them, more recent study [26] has showed that hydrazine borane with a gravimetric hydrogen storage capacity of 15.4% wt needs to be considered as another B-N compound that can be used for the storage of hydrogen. Herein we report for the first time, metal catalyzed hydrolysis of hydrazine borane (N2H4BH3, HB) under air at room temperature. Among the catalyst systems tested, rhodium(III) chloride was found to provide the highest catalytic activity in this reaction. In the presence of rhodium(III) chloride, the aqueous solution of hydrazine borane undergoes fast hydrolysis to release nearly 3.0 equivalent of H2 at room temperature with previously unprecedented H2 generation rate TOF = 12000 h−1. More importantly, it was found that in the catalytic hydrolysis of hydrazine borane the reaction between hydrazine borane and water proceeds almost in stoichiometric proportion indicating that the efficient hydrogen generation can be achieved even from the highly concentrated solution of hydrazine borane or in the solid state when water added to the solid hydrazine borane. This finding is crucial especially for on-board application of the existing system. The work reported here also includes (i) finding the solubility of hydrazine borane plus its stability against self-hydrolysis in water, (ii) the definition of reaction stoichiometry and the identification of reaction products for the catalytic hydrolysis of hydrazine borane, (iii) the collection of wealthy kinetic data to demonstrate the effect of substrate and catalyst concentrations on the hydrogen generation rate and to determine the rate law for the catalytic hydrolysis of hydrazine borane, (iv) the investigation of the effect of temperature on the rate of hydrogen generation and determination of activation parameters (Ea, ΔH#, and ΔS#) for the catalytic hydrolysis of hydrazine borane.  相似文献   

12.
We have measured the Raman spectra of gaseous molecular hydrogen dissolved in liquid water at room temperature and as a function of pressure. Vibrational spectra of molecular hydrogen have been clearly detected. Band intensities and profiles have been carefully measured using, for calibration purposes, the water OH stretching band. From the measured intensities of the Raman band, we have obtained the behavior of hydrogen concentration in the liquid water, as a function of the gas partial pressure. The observed behavior is presented and compared to Henry’s law predictions. Additionally, we present a detailed analysis of the spectral band features from which important information on the interaction of hydrogen with water molecules could be derived.  相似文献   

13.
Expanded natural graphite (ENG) was added to enhance the effective thermal conductivity of MgH2, which is one of the important parameters in the design of MgH2-based hydrogen storage tanks. Cylindrical MgH2 compacts containing up to 20 wt% ENG flakes with various average sizes (20, 50, 200, 350 and 1200 μm) were fabricated to measure the effective thermal conductivity of MgH2–ENG mixtures. The radial direction effective thermal conductivity of the compacts was measured under a hydrogen atmosphere up to 70 bar. The conductivity was significantly enhanced by the addition of ENG flakes, reaching 9.3 W m−1 K−1 at 20 wt% ENG at 1 bar of hydrogen. It was observed that hydrogen pressure and the size of ENG flakes influenced the conductivity together with the amount of ENG. As hydrogen pressure increased up to 20 bar, the conductivity continued to increase. On the other hand, the conductivity very slowly increased above 20 bar, exhibiting a saturation tendency. It relatively rapidly increased with increasing average flake size up to 200 μm and then gradually decreased with further increasing size up to 1200 μm, exhibiting the maximum value at an average flake size of 200 μm. This trend might be determined by the competition between the thermal resistance at ENG/MgH2 interfaces and the formation of conductive networks of ENG flakes.  相似文献   

14.
We investigated the hydrogenation of a binary TiFe alloy at 5 GPa and 600 °C by in situ synchrotron radiation X-ray diffraction measurements. After formation of a solid solution of hydrogen in TiFe, an order–disorder phase transition in the metal lattice of TiFe occurred, which yielded a BCC TiFe hydride. The unit cell volume of the BCC hydride increased by 21.0% after the hydrogenation reaction. The volume expansion was larger than that of a γ-hydride TiFeH1.9 prepared by hydrogenation near ambient conditions.  相似文献   

15.
By combining the micromechanics and continuum damage mechanics, a theoretical model is proposed to perform the fatigue evaluation of high pressure hydrogen storage vessel under cyclic internal pressure, which concentrates on the fatigue properties of the aluminum liner. Results show that the fatigue lifetime of vessel relates to the finite element mesh size, crack density and ratio in an element, cyclic loading amplitude and stress status at the liner. Effects of the mesh size and crack density on the fatigue lifetime of vessel are discussed. In addition, numerical results are also compared with those by experiments.  相似文献   

16.
In this report, we provide a framework for describing the permeability, solubility and diffusivity of hydrogen and its isotopes in austenitic stainless steels at temperatures and high gas pressures of engineering interest for hydrogen storage and distribution infrastructure. We demonstrate the importance of using the real gas behavior for modeling permeation and dissolution of hydrogen under these conditions. A simple one-parameter equation of state (the Abel–Noble equation of state) is shown to capture the real gas behavior of hydrogen and its isotopes for pressures less than 200 MPa and temperatures between 223 and 423 K. We use the literature on hydrogen transport in austenitic stainless steels to provide general guidance on and clarification of test procedures, and to provide recommendations for appropriate permeability, diffusivity and solubility relationships for austenitic stainless steels. Hydrogen precharging and concentration measurements for a variety of austenitic stainless steels are described and used to generate more accurate solubility and diffusivity relationships.  相似文献   

17.
A multiscale theoretical technique is used to examine the combination of different approaches for hydrogen storage enhancement in metal-organic frameworks at room temperature and high pressure by implementation lithium atoms in linkers. Accurate MP2 calculations are performed to obtain the hydrogen binding sites and parameters for the following grand canonical Monte Carlo (GCMC) simulations. GCMC calculations are employed to obtain the hydrogen uptake at different thermodynamic conditions. The results obtained demonstrate that the combination of different approaches can improve the hydrogen uptake significantly. The hydrogen content reaches 6.6 wt% at 300 K and 100 bar satisfying DOE storage targets (5.5 wt%).  相似文献   

18.
The strain generated in a reaction tank of hydrogen storage alloys were measured in order to analyze strain variation in different locations during hydrogen absorption-desorption cycles. Strain gauges were set on the various locations of the tank. The change of strain was continuously monitored using the strain analyzer. The results indicate that plastic deformation had occurred during activation period, and it did not become larger in the later hydriding-dehydriding cycles though the tank still had the ability for elastic deformation. The stress induced by alloy swell on the tank was over 8 MPa. Tangential strain was greater than longitudinal strain in each place. There wasn't much more difference in Longitudinal at respective points while tangential strain in the middle part was much larger than that in two sides' parts of the tank. The nonuniform packing density lead the deformation tended to occur more serious in tail part than in head part.  相似文献   

19.
Wind energy and the hydrogen economy—review of the technology   总被引:2,自引:0,他引:2  
The hydrogen economy is an inevitable energy system of the future where the available energy sources (preferably the renewable ones) will be used to generate hydrogen and electricity as energy carriers, which are capable of satisfying all the energy needs of human civilization. The transition to a hydrogen economy may have already begun. This paper presents a review of hydrogen energy technologies, namely technologies for hydrogen production, storage, distribution, and utilization. Possibilities for utilization of wind energy to generate hydrogen are discussed in parallel with possibilities to use hydrogen to enhance wind power competitiveness.  相似文献   

20.
This paper investigates the optimal planning of microgrids including the hydrogen energy system through mixed-integer linear programming model. A real case study is analyzed by extending the only microgrid lab facility in Austria. The case study considers the hydrogen production via electrolysis, seasonal storage and fueling station for meeting the hydrogen fuel demand of fuel cell vehicles, busses and trucks. The optimization is performed relative to two different reference cases which satisfy the mobility demand by diesel fuel and utility electricity based hydrogen fuel production respectively. The key results indicate that the low emission hydrogen mobility framework is achieved by high share of renewable energy sources and seasonal hydrogen storage in the microgrid. The investment optimization scenarios provide at least 66% and at most 99% carbon emission savings at increased costs of 30% and 100% respectively relative to the costs of the diesel reference case (current situation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号