首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermodynamically and kinetically stable regions of the temperature–H2 pressure phase boundaries for the ZrCoH system were established using the Temperature-Concentration-Isobar (TCI) method. Based on this, the enthalpy change and entropy change values of dehydrogenation and disproportionation reactions were successfully obtained. The average enthalpy change (ΔH) and entropy change (ΔS) estimated from the phase boundaries for dehydrogenation of ZrCoH3 to ZrCo are respectively 103.07 kJ mol?1H2 and 148.85 J mol?1 H2 K?1, which are well agreement with the data reported in literature. The average ΔH and ΔS were estimated to be ?120.91 kJ mol?1H2 and -149.32 J mol?1 H2 K?1 for the disproportionation of ZrCoH3, whereas the ΔH and ΔS were calculated to be ?84.6 kJ mol?1H2 and -92.29 J mol?1 H2 K?1 for disproportionation of ZrCo. In addition, it was found from the established phase boundaries that the anti-disproportionation property of ZrCo alloy can be enhanced if the phase boundaries of hydrogenation/dehydrogenation are far away from the phase boundaries of disproportionation by adjusting the thermodynamics. Meanwhile, it is possible to keep ZrCo away from disproportionation even at high temperature of 650 °C under hydrogen atmosphere, if the temperature-H2 pressure trajectory is carefully controlled without crossing the phase boundaries of disproportionation. Therefore, the established phase boundaries can be used as a guide to the eye avoiding disproportionation and improving the anti-disproportionation property of ZrCo alloy.  相似文献   

2.
Ab initio calculations have been carried out to investigate the adsorption, dissociation, and diffusion of atomic and molecular hydrogen on the Fe-doped ZrCo (110) surface. It is found that the adsorption of H2 on doped surface seems thermodynamically more stable with more negative adsorption energy than that on the pure surface, and the dissociation energy of H2 on doped surface is much bigger therefore. However, compared with the pure system, there are fewer adsorption sites for spontaneous dissociation. After dissociation, the higher hydrogen adsorption strength sites would promote the H atom diffusion towards them where they can permeate into the bulk further. Furthermore, the ZrCo (110) surface possesses much higher hydrogen permeability and lower hydrogen diffusivity than its corresponding ZrCo bulk. Moreover, further comparison of the present results to analogous calculations for pure surface reveals that the Fe dopant facilitates the H2 molecule dissociation. Unfortunately, this does not improve the hydrogen storage performance of ZrCo alloy due to the H atom diffusion on the surface and into bulk are prevented with higher reaction energetic barriers by doping Fe. Consequently, ZrCo (110) surface modified with Fe atoms should not be preferred as a result of its terrible hydrogen permeability. A clear and deep comprehending of the inhibiting effect of Fe dopant on the hydrogen storage of ZrCo materials from the perspective of the surface adsorption of hydrogen are obtained from the present results.  相似文献   

3.
In this paper, a three-dimensional (3D) hydrogen desorption model is applied to the thin double layered annulus ZrCo based hydrogen storage bed to precisely study the hydrogen desorption reaction and resultant heat and mass transport phenomena inside the bed. The 3D hydrogen desorption simulations are carried out and calculated results are compared with the experimental data measured by Kang et al. [1]. The present model reasonably captures the bed temperature evolution behavior and the hydrogen discharging time for 90% desorption. In addition, the thin double layered annulus metal hydride bed (MHB) design is numerically evaluated by comparing with a simple cylindrical MHB. More uniform distributions in the bed temperature and H/M atomic ratio and resultant superior hydrogen desorption performance are achieved with the thin double layered annulus bed owing to its high external surface to volume ratio and thus more efficient heating. This numerical study indicates that efficient design of the metal hydride bed is key to achieve rapid hydrogen discharging performance and the present 3D hydrogen desorption model is a useful tool for the optimization of bed design and operating conditions.  相似文献   

4.
Intermetallic alloy ZrCo is believed to be a good substitution for uranium to store tritium. Nevertheless, disproportionation reaction often happens during the hydriding and dehydriding processes, and hydrogen storage property of ZrCo is therefore degraded. Alloying elements are often used to substitute Zr or Co in ZrCo to restrain disproportionation reaction. However, many experimental results do not agree with each other, and it lacks overall tendency for all transition metal elements. In this work, systematical ab initio calculations are performed to study more than 20 transition alloying elements to substitute Co and Zr in ZrCoH3 to study the anti-disproportionation effects. It is found that substitution of Co by transition metal elements on anti-disproportionation reaction is unconspicuous, and only Ni can enlarge Zr–H bond length and decrease the volume of 8e site, presenting anti-disproportionation effect, which qualitatively agrees with the previous experiments. In contrast, all transition alloying elements considered except Fe, Co, Ni, Ru, Rh, Pd, Os and Ir replacing Zr can both enlarge the length of Zr–H bond and decrease the volume of 8e site, and thus restrain the disproportionation effects. At last, two-dimensional charge density and density of states are calculated to analyze the underlying mico-mechanisms affecting the effects of transition alloying elements on anti-disproportionation reaction.  相似文献   

5.
Fast heat and mass delivery with high cycling stability of the core component, hydrogen storage bed, in SDS are essential for the operation of the future tritium factory in ITER project. However, the aforementioned properties are still perplexing in large-capacity ZrCo bed, especially for that with secondary containment structure required by the actual tritium operation in the future. Herein, the performance including heating, cycling and cooling with two different size ZrCo beds (loading of ZrCo are 200 g and 2000 g respectively) were systematically studied. The experimental data shows that the maximum heating ability of the middle-size/full-scale storage bed are both about 10 °C/min, and the maximum hydrogen absorption capacity of these ZrCo beds are 44.6 L/405.5 L, respectively. Besides, hydrogen pressure and hydrogen retention during the following desorption can affect the cycling performance of the ZrCo bed. The use of transfer pump can reduce the pressure of the bed during the hydrogen desorption process (operated at 500 °C), which inhibits the disproportionation reaction of the ZrCo alloy. However, the degree of hydrogen pressure reduction in two the types of ZrCo bed are different. As a result, the cycling capacity of the middle-size bed (93.4%, lower hydrogen pressure) is higher than the full-scale bed (68.7%, higher hydrogen pressure) after 10 cycles. When the transfer pump was not used and operated at lower temperature (350 °C), the beds cannot release hydrogen completely, and partial hydrogen atoms are retained in the ZrCo alloy. The middle-size bed still maintains a hydrogen storage capacity of 94.5% after 10 cycles, while 75.9% of the hydrogen storage capacity remained for the full-scale bed. Therefore, the increase of hydrogen surplus in ZrCo alloy is helpful to improve its cycling stability. At last, the cooling performances of the beds under 10 different cooling methods were studied. Among the cooling methods, the best cooling rate was achieved by filling nitrogen in the secondary containment cavity and flowing water passing through the cooling circuit of the bed. This work will provide a crucial reference for the design and optimization of the subsequent operation technology of SDS in ITER.  相似文献   

6.
Considering the thermodynamic stability of various hydrides, a strategy has been employed to improve the hydrogen isotope storage properties of ZrCo alloy which involves partial co-substitution of Zr with Ti and Nb. Herein, alloys of composition Zr0.8Ti0.2-xNbxCo (x = 0.05, 0.1, 0.15) is prepared, characterized and the effect of Ti and Nb doping on hydrogen storage properties of parent ZrCo alloy is investigated. XRD analysis confirmed the formation of desired pure cubic phase of all the synthesized alloys similar to ZrCo phase. The presence of a single plateau in hydrogen desorption pressure-composition isotherms confirms single step hydrogen absorption-desorption behavior in Zr0.8Ti0.2-xNbxCo alloys. The equilibrium pressure of hydrogen desorption decreases marginally with increasing Nb content in Zr0.8Ti0.2-xNbxCo alloys which is further corroborated by differential scanning calorimetry measurements. Investigation of hydrogen induced disproportionation behavior in ITER-simulating condition revealed substantial impact of co-substitution of Ti and Nb on anti-disproportionation properties of ZrCo alloy. These remarkable properties make the Ti and Nb co-substituted quaternary alloys a desirable material for hydrogen isotope storage and delivery application.  相似文献   

7.
In our previous study, we showed that the anti-disproportionation properties of Zr0.8Ti0.2-xNbxCo alloys were remarkably improved by the co-substitution of Zr with Ti and Nb. However, the practical application of these alloys in handling of hydrogen isotopes necessitates the first hand knowledge of hydrogen isotope effect. Herein, we discuss the hydrogen isotope effect on storage properties of Zr0.8Ti0.2-xNbxCo alloys. According to PCT measurements on desorption of deuterium from the Zr0.8Ti0.2-xNbxCo deuterides and comparison with corresponding hydrides, the deuterides require relatively lower temperature to achieve the desired equilibrium pressure. DSC measurements reveal a significant decrease in the activation energy for hydrogen/deuterium desorption reactions when Zr is substituted with Ti and Nb. Furthermore, it is observed that the activation energy of deuterium desorption is lower than the desorption of hydrogen from analogous hydride. Isotope effect on isothermal disproportion studies on Zr0.8Ti0.2-xNbxCo-deuterides divulge that Zr0.8Ti0.2-xNbxCo-deuterides have superior anti-disproportionation properties over corresponding hydrides, and further improvement is anticipated for the Zr0.8Ti0.2-xNbxCo-tritides. This study revealed the significant impact of Ti and Nb co-substitution on hydrogen isotope storage properties of Zr0.8Ti0.2-xNbxCo alloys, making them potential candidates for handling hydrogen isotopes.  相似文献   

8.
In this paper, a three-dimensional (3-D) hydrogen absorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. [1]. In their experiment, the monitored hydrogen tank pressure decreased with time due to continuous hydrogen supply to a ZrCo hydride bed; hence, the effect of decreasing hydrogen feed pressure is considered for simulations. The equilibrium pressure expression for hydrogen absorption on ZrCo is derived as a function of temperature and the H/M atomic ratio based on the pressure–composition isotherm data given by Konishi et al. [2]. In general, the calculated results agreed well with the temperature evolution data, and the hydrogen charging time for 99% absorption was accurately captured by the model. In addition, detailed simulation results, including multidimensional contours, clearly elucidate the hydrogen absorption behavior of the thin double-layered ZrCo MHB.  相似文献   

9.
The effects of Pd coating with different deposition concentration (PdCl2 0.2 g L?1, 0.6 g L?1, 1.0 g L?1) on the surface morphology, microstructure and hydrogen storage performances of ZrCo alloy have been investigated. Results show that spherical Pd particles have been deposited on the surface of ZrCo alloy successfully, which transfer from sparse arrangement to continuous and compact film with increasing deposition concentration of PdCl2. The hydriding kinetic property of all Pd coated alloys is improved compared with the bare alloy, which is due to the catalyst effect of Pd coating. The hydriding rate of the samples firstly increases and then decreases with increasing deposition concentration, which is closely related to the surface morphology and thickness of Pd coating. The hydriding kinetic property of the samples is greatly improved after 5 cycles, although Pd particles on the alloy surface peel off to some extent. This phenomenon indicates that the accumulated fresh surface during cycling makes a greater contribution to the improved hydriding kinetic property and the catalyst effect of Pd coating is weakened during cycling.  相似文献   

10.
Cycling stability of ZrCo–H system is extremely important for the long-term operation of the storage and delivery system (SDS) in ITER. Herein, the optimal cycling operation parameters were systematically investigated. It indicates that various parameters, such as hydrogen pressure, temperature, composition, and stoichiometric ratio of H atoms, will all affect the cycling performance of the ZrCo–H system significantly. The decline rate of the hydrogen capacity of the ZrCo–H system is positively correlated with the hydrogen pressure. The experimental result shows that 54% of hydrogen capacity decreases under 28.1 kPa hydrogen pressure, while 30% of attenuation is obtained when the pressure is decreased to 8.1 kPa after 14 cycles. In terms of temperature, the lowest cycling attenuation can be maintained at about 25% after 14 cycles when the dehydrogenation temperature at 550 °C. The effects of doping elements, Hf and Ti, on the cycling stability of ZrCo–H system are also compared. The Zr0.8Ti0.2Co sample exhibits higher cycling capacity than ZrCo and Zr0.8Hf0.2Co samples. The extremely excellent behavior can be achieved when all ZrCo alloys are continuously evacuated during the hydrogen release process, and the attenuation of only 1.1% is observed for Zr0.8Ti0.2Co after 15 cycles. Besides, the cycling attenuation is related to residual stoichiometric ratio of H atoms in ZrCo alloy during the cycling test. When the residual H atoms proportion exceeds 1 in ZrCo during dehydrogenation, hydrogen cycling capacity hardly fades. The XRD results reveal that the disproportionation of ZrCo is directly associated with the cycling degradation, yielding the more stable products of ZrCo2 and ZrH2, However, the disproportionation can be avoided during the cycling process by controlling the stoichiometric ratio of H atoms remained in ZrCo above 1. This study demonstrates that the cycling performance of ZrCo can be substantially improved when the operation parameters are properly adjusted, which provides a significant important reference for durable running of SDS in ITER.  相似文献   

11.
Aimed at enhancing the hydrogen absorption/desorption performances of ZrCo system, Ni/Pd dual metal coating is employed on ZrCo alloy combined with the electroless plating and displacement plating. The effects of Ni/Pd dual metal coating on the microstructure, hydrogen storage performance of ZrCo alloys were investigated systematically. The results show that Ni/Pd dual metal coating deposits on the surface of ZrCo sample successfully with the thickness of 500 nm. The hydrogen absorption kinetic property is substantially enhanced for ZrCo alloy after Ni/Pd dual metal coating, which is owing to the catalytic effect of Ni/Pd coating. Further, the activation energies (Ea) for hydrogen absorption and desorption are calculated using the Arrhenius Equation and Kissinger method, respectively. Compared with the bare ZrCo, the activation energies of the Ni/Pd coated samples for hydriding/dehydriding process decrease which facilitate the hydrogenation/dehydrogenation reaction. This work introduces a rational approach by building new catalytic coating on the hydrogen storage materials to improve the hydriding/dehydriding kinetic performance.  相似文献   

12.
Tritium target is of crucial importance in relation to the development of neutron generator apparatus. However, the prevalent Ti target is now suffering from the intricate procedures for activation, limited tritium content at room temperature (RT) and poor ability to fix the helium. Herein, a succession of new type ZrCo(Ti) alloy targets were designed and fabricated by magnetron sputtering. Firstly, the influence of technological parameters (types of substrate, sputtering temperatures, sputtering time and annealing temperatures) on the assemblage and also the hydrogen storage properties of the ZrCo films were systemically studied. The results show that high sputtering temperature is benefit to acquiring high crystallinity of ZrCo films, but the substrates seem to have no significant effect on that. The thickness and grain size of ZrCo film are both positively related to the sputtering time. However, the hydrogen uptake capacities (0.14 wt%~0.79 wt%) for all the prepared ZrCo films are relatively low. After that, the composition and microstructure of the ZrCo films were further regulated and optimized. On the one hand, Zr1-xTixCo films were constructed by introduction of Ti element, achieving a higher hydrogen absorption capacity (~0.7 wt%), but with weak thermal stability in the subsequent hydrogen desorption process (~80% of hydrogen escaped at 500 °C). On the other hand, the surface of the ZrCo film was modified by a thin layer of Ti, forming a serious of double-layer ZrCo/Ti films. The ZrCo/Ti composite films not only achieve extremely high hydrogen storage capacity (1.85 wt%), but also maintain strong thermal stability (only 15.7% of hydrogen escaped at 500 °C). These findings related to the ZrCo(Ti) films in this paper provide crucial reference for the development of tritiated ZrCo film targets, and spark inspiration even for the design of other new-type tritiated film target.  相似文献   

13.
There are two phase structures involved in ZrCo hydrides (ZrCoHx). When x ≤ 1, the α-phase hydride is generated when hydrogen atoms occupy the 3c and 12i sites. When 1 < x ≤ 3, three interstitial sites of 4c2, 8f1, and 8e are occupied by H, and in turn the β-phase hydride is formed. There is a disproportionation reaction in β-phase hydrides during hydrogen discharging process to produce the ZrH2 phase with higher thermal stability, leading to inferior hydrogen storage performance. In this study, the influence of hydrogen storage capacity on thermodynamic and lattice stabilities of α- and β-phase hydrides for each occupancy position is investigated under the framework of the first-principles study. The results indicate that the binding energy in the 3c site is higher compared with the 12i site under the condition of identical hydrogen storage capacity. Similarly, the binding energy is the largest for the 8e site compared with the other two sites, indicating that there is the least energy released in the reaction process. Thus, the 8e site is proved as the most unfavorable site in β-phase ZrCo hydrides, which is due to its degraded thermodynamic stability. Also, comparisons of mechanical properties and total density of states for each site in two hydride phases are presented to demonstrate that compound lattice stability in the 8e site is the poorest, suggesting that it is more likely to produce disproportionation. Furthermore, the dependence of hydrogen storage performance of β-phase hydrides on Ti/Rh doping is examined as well. It is discovered that there is improved thermodynamic stability and lattice stability in the 8e site for Zr0.875Ti0.125Co after Zr is partially substituted by Ti, which significantly enhances the disproportionation resistance. In contrast, when Co is partially replaced by Rh, there is a deterioration in the thermodynamic stability of ZrCo0.875Rh0.125 in the 8e site, but its lattice stability is somewhat improved.  相似文献   

14.
This paper investigates the decoration of superalkali NLi4 on graphene and the hydrogen storage properties by using first principles calculations. The results show that the NLi4 units can be stably anchored on graphene while the Li atoms are strongly bound together in the superalkali clusters. Decoration using the superalkali clusters not only solve the aggregation of metal atoms, it also provide more adsorption sites for hydrogen. Each NLi4 unit can adsorb up to 10 H2 molecules, and the NLi4 decorated graphene can reach a hydrogen storage capacity 10.75 wt% with an average adsorption energy ?0.21 eV/H2. We also compute the zero-point energies and the entropy change upon adsorption based on the harmonic frequencies. After considering the entropy effect, the adsorption strengths fall in the ideal window for reversible hydrogen storage at ambient temperatures. So NLi4 decorated graphene can be promising hydrogen storage material with high reversible storage capacities.  相似文献   

15.
Diffraction-based methods offer unique advantages for elucidating the pathways by which materials absorb and desorb hydrogen, especially when a phase change or the formation of new compounds is involved. In this case, the hydriding reaction may be followed via the changing crystallography of the phases involved in response to a change in temperature or hydrogen pressure. By using a fast diffractometer, the reaction kinetics may also be correlated to environmental conditions and the degree of completion of the reaction. In this paper we consider and model quantitatively the essential elements of a successful in-situ diffraction experiment with neutrons or X-rays under hydrogen pressures up to several kilobars: a gas manifold to accurately measure hydrogen uptake; a pressure cell designed for maximum detected intensity; means to exclude scattering arising in the cell as much as possible; methodology to correct for attenuation and subtract background intensity from the cell and environment.  相似文献   

16.
TiFe is a very interesting material for hydrogen storage in the solid state, due to its hydrogen capacity of 1.9 wt % and to the fact it can be absorb/desorb hydrogen at room temperature. However, the TiFe produced by casting does not absorb hydrogen, unless a procedure called activation is applied, which is based on a repetition of several thermal cycles. This study evaluates the effects of a mechanical activation route for the TiFe intermetallic compound, namely, cold rolling (CR) under inert atmosphere. Stoichiometric TiFe was prepared from elementary powders by arc melting. Ingot was grinded and then cold rolled for 20 and 40 passes under argon inside a glove box, with moisture and oxygen contents below 0.1 ppm. Cold rolled samples consisted of two parts: powder particles and thin cracked flakes. The results showed that mechanically activated samples by CR exhibited rapid absorption of hydrogen at room temperature, without using a thermal activation process. In general, the average storage capacity of hydrogen was 1.4 wt% H2 for the first absorption, regardless of the number of passes for both flake and powder samples.  相似文献   

17.
Hydrogen storage alloys are usually susceptible to poisoning by O2, CO, CO2, etc., which decreases the hydrogen storage property sharply. In this paper, the adsorption characteristics of oxygen on the ZrCo(110) surface were investigated, and the effect of oxygen occupying an active site on the surface on the hydrogen adsorption behavior was discussed. The results show that the dissociation barrier of H2 is increased by more than 26% after O occupies the active sites on the ZrCo(110) surface, and the probability of H2 adsorption and dissociation decreases significantly. The adsorption energy of H atoms on the O–ZrCo(110) surface decreased by 18–56%, and the adsorption stability of H decreased. In addition, H atom diffusion on the surface and into bulk are prevented with higher reaction energetic barriers by O occupying active sites. Eventually, the ability of the ZrCo surface to adsorb hydrogen is seriously reduced.  相似文献   

18.
We perform first-principles calculations to investigate the effects of alloying substitutions (i.e. Ti, Hf, Sc, Fe, Ni and Cu) on hydrogen-induced disproportionation of ZrCo alloy. H at the 8e site of ZrCoH3 (H(8e)) plays the key role in the disproportionation process. It is found that H(8e) prefers to form strong covalent-like binding with the neighboring Co and its substitute elements, which is distinctly different from H at the 4c2 and 8f1 sites. Alloying substitutions can restrain or accelerate the disproportionation by influencing the ZrH(8e) bond length and the size of the 8e site. Judged from this, the anti-disproportionation ability of these alloying substitutions is identified. Our results of Ti, Hf, Sc, Fe and Ni are in good agreement with the previous experimental results. It is also predicated that Cu can accelerate hydrogen-induced disproportionation of ZrCo alloy.  相似文献   

19.
Understanding the system performance of different electrolyzers could aid potential investors achieve maximum return on their investment. To realize this, system response characteristics to 4 different summarized data sets of curtailed renewable energy is obtained from the Irish network and was investigated using models of both a Low Temperature Electrolyzer (LTE) and a High Temperature Electrolyzer (HTE). The results indicate that statistical parameters intrinsic to the method of data extraction along with the thermal response time of the electrolyzers influence the hydrogen output. A maximum hydrogen production of 5.97 kTonne/year is generated by a 0.5 MW HTE when the electrical current is sent as a yearly average. Additionally, the high thermal response time in a HTE causes a maximum change in the overall flowrate of 65.7% between the 4 scenarios, when compared to 7.7% in the LTE. This evaluation of electrolyzer performance will aid investors in determining scenario specific application of P2G for maximizing hydrogen production.  相似文献   

20.
The catalytic effect of rare-earth hydrogen storage alloy is investigated for dehydrogenation of alane, which shows a significantly reduced onset dehydrogenation temperature (86 °C) with a high-purity hydrogen storage capacity of 8.6 wt% and an improved dehydrogenation kinetics property (6.3 wt% of dehydrogenation at 100 °C within 60 min). The related mechanism is that the catalytic sites on the surface of the hydrogen storage alloy and the hydrogen storage sites of the entire bulk phase of the hydrogen storage reduce the dehydrogenation temperature of AlH3 and improve the dehydrogenation kinetic performance of AlH3. This facile and effective method significantly improves the dehydrogenation of AlH3 and provides a promising strategy for metal hydride modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号