首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pd nanoparticles (PdNPs) with the diameter of ~3.2 nm were successfully confined within a robust three dimensional (3D) N-doped porous graphene (R3DNG) via a polyol-assisted reduction strategy. The as-obtained PdNPs/R3DNG composite was characterized by SEM, TEM, XRD and XPS, and was conducted as electrocatalyst for methanol oxidation in alkaline medium. The results showed that PdNPs/R3DNG featured the remarkable electrocatalytic activity (2.71 A mg?1 Pd) and outstanding cyclic stability (66.5% forward peak current retention after 1000 cycles), which is even superior to the state-of-the-art Pt/C catalyst. The synergistic effect between the support of R3DNG and PdNPs is believed to be responsible for the outstanding electrocatalytic performance.  相似文献   

2.
The contradiction between the porous structure and density of graphene materials makes it unable to meet the dual requirements of the next generation supercapacitors for gravimetric capacitance and volumetric capacitance. Herein, we successfully synthesized high-density oxygen-enriched graphene hydrogels (HOGHs) by a one-step hydrothermal method using high concentration graphene oxide (GO) solution and trometamol as precursors. The as-prepared HOGHs samples present a dense 3D network structure and moderate specific surface areas, which leads to a high packing density. In addition, the HOGHs samples also contain abundant oxygen-containing functional groups and some nitrogen-containing functional groups. These heteroatomic functional groups can provide pseudocapacitance for the electrode materials. Therefore, the HOGH-140 based symmetric supercapacitor shows ultrahigh gravimetric and volumetric specific capacitance (325.7 F g−1, 377.8 F cm−3), excellent rate performance and cycling stability. Simultaneously, the symmetric binder-free supercapacitor exhibits high gravimetric specific energy density (11.3 Wh kg−1) and volumetric specific energy density (13.1 Wh L−1) in 6 M KOH, respectively. These outstanding properties make the material have a good application prospect in the field of compact energy storage devices.  相似文献   

3.
The exploration of highly active and stable nonprecious electrocatalysts for the hydrogen evolution reaction (HER) is of great significance for the advancement of diverse sustainable energy storage and conversion systems. Herein, we demonstrate a facile one-pot hydrothermal synthesis of ultrafine and monodisperse NiS/NiS2 heteronanoparticles (ca. 3.2 nm) uniformly in situ grown on N-doped reduced graphene oxide nanosheets (denoted as NiS/NiS2@N-rGO hereafter). In such unique NiS/NiS2@N-rGO sample, the tiny-sized NiS/NiS2 heteronanoparticles with abundant intimate interfacial contacts allow the effective modification of the electronic structure and more exposure of catalytically active sites. Moreover, the conductive N-rGO support could serve as a “highway” of in-plane charge transfer and facilitate the mass diffusion during the electrocatalytic process. As a consequence, the resultant NiS/NiS2@N-rGO catalyst exhibits a superior HER performance with an overpotential of 148 mV to deliver a current density of 10 mA cm−2 in 1.0 M KOH solution. The NiS/NiS2@N-rGO catalyst could also endure long-term operation for 12 h with negligible activity attenuation and morphological change. The present study provides a feasible approach to explore efficient and robust non-noble metal-based electrocatalysts for a variety of renewable electrochemical applications.  相似文献   

4.
In this work, a nitrogen-doped graphene (NG) catalyst was prepared using a hydrothermal method with ammonia as the nitrogen precursor, which was followed by a freeze-dry process. The catalyst was characterized using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscope, and X-ray photoelectron spectroscopy. The bifunctional catalytic activities for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) were investigated using cyclic voltammetry in an alkaline electrolyte. The results indicate that nitrogen is successfully doped in the NG catalyst, and the catalyst has a loose structure that was produced during the freeze-dry process. The catalyst exhibits an excellent ORR activity with an onset potential of −0.08 V and a high OER activity with an obvious OER current at 0.7 V. The rotating-disk-electrode test results indicate that the ORR process catalyzed by the NG catalyst involves a mix of the two-electron and four-electron transfer pathways. This work preliminarily explores the bifunctional catalytic properties for the ORR and the OER of nitrogen-doped graphene materials in alkaline electrolyte.  相似文献   

5.
PtRu and PtRuMo electrocatalysts supported on N-doped graphene nanoplatelets (N-GNPs) were synthesized by a polyol method and utilized as anodes in polymer electrolyte membrane fuel cells (PEMFCs) to measure their CO tolerance and stability. A higher structural stability of the N-GNP supported catalysts, presenting a lower metal loss and a lower particle growth than PtRu/C was observed. Tests in PEMFCs indicated both a higher CO tolerance and a higher electrochemical stability of N-GNP supported PtRu and PtRuMo catalysts than a commercial conventional carbon black (CB) supported PtRu.  相似文献   

6.
As a front runner to substitute for Pt as oxygen reduction reaction (ORR) catalysts, the N species in N-doped carbon materials have an important effect on their ORR activity. Herein, we report a nitrogen-doped graphene sheets (NrGO) rich in graphitic-N prepared through a thermal pyrolysis process of a mixture of polyaniline and graphene oxide. The electrochemical result of this novel graphitic N-rich NrGO exhibits excellent catalytic performance for oxygen reduction reaction with onset potential of 0.99 V and half-wave potential of 0.84 V. The transferred electron number of the oxygen reduction reaction process is 3.92, indicating a typical 4 electron path. This new NrGO sheet catalyst also exhibits outstanding durability and methanol resistance superior to Pt/C. This paper can provide a basis for the research of the effect of nitrogen species on their ORR catalytic activity in N-doped carbon materials.  相似文献   

7.
8.
Proton exchange membrane fuel cells (PEMFCs) possess high energy and low power densities, while supercapacitors are characterized by high power and low energy densities. A hybrid PEMFC/supercapacitor device (HPSD) with high energy and power densities was proposed and fabricated for the first time using a reduced graphene oxide/Nafion/Pt electrode in this study. The reduced graphene oxide (rGO) was a capacitive material, and Pt was used as the electrocatalyst. Nafion ionomers adsorbed onto the rGO sheets surface and connected the rGO sheets and the electrolyte (Nafion membrane), thus increasing the utilization rate and specific capacitance of rGO. During the half-cell tests, the rGO/Nafion/Pt electrode exhibited better pulse discharge and galvanostatic discharge performance than the conventional Nafion/Pt electrode. Due to the unique synergy of electrochemical reaction current and capacitance current during the discharge process, the HPSD exhibited a higher power density (26.2 kW kg−1) than the PEMFC (23.9 kW kg−1). The energy density (12.7 kWh kg−1) exhibited by HPSD was close to that of the PEMFC (13.5 kWh kg−1). Therefore, the concept of HPSD is to create a new method for developing next-generation electrochemical devices with high energy and power densities.  相似文献   

9.
The poor volumetric electrochemical performance of graphene greatly limits its application in miniaturized electronic equipment. To solve this problem, nanocellulose/N, O co-doped graphene composite hydrogels (NGCHs) were synthesized by a simple hydrothermal method using high-concentration graphene oxide (GO) solution, ammonia and nanocellulose (NC) as reaction precursors. During the reaction process, the strong π-π stacking interaction between graphene sheets in high-concentration GO solution was the main driving force for the formation of the dense structure of NGCHs. Ammonia was used as a reducing agent, nitrogen dopant and modifier of the sample structure. NC was used as a spacer, and the electrostatic repulsion between its oxygen-rich surface and GO sheet can prevent the excessive agglomeration of graphene. In addition, NC can also be used as electrolyte reservoirs to facilitate the infiltration of electrolytes in NGCHs. The resulting NGCHs show dense mesoporous-dominant structure, abundant heteroatom-rich functional groups (16.46–18.25 at%) and high packing density (1.22–1.35 g cm?3). Consequently, the NGCH-150 based binder-free symmetric supercapacitors presents high gravimetric (299.7 F g?1) and volumetric (404.6 F cm?3) capacitance at 0.3 A g?1, an exceptional rate capability of 81.6% up to 10 A g?1 and good cycle ability (93.8% after 10,000 cycles). Therefore, our experimental strategy is hopeful to prepare electrode materials for the next-generation miniaturized energy storage devices.  相似文献   

10.
Existing catalysts for ethanol oxidation in direct ethanol fuel cells (DEFC) are faced to significant challenges due to their poor performance and CO like intermediates poisoning tolerance at anode surface. Hence researchers are looking for new electrocatalysts in the ethanol oxidation. In this study, polypyrrole/N-doped graphene oxide (PPy/NGO) nanocomposite was prepared using in-situ polymerization method. Next the platinum-palladium (PtPd) was electrochemically decorated on PPy/NGO nanocomposite surface. In order to ensure the correct preparation of nanocomposite, fourier transform infrared spectroscopy (FT-IR) analysis was carried out to peruse the chemical structure of the nanocomposite and also to investigate their morphology, field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were used. The morphology of nanocomposite shows that PPy has penetrated into the space between NGO plates. Disparate electrochemical techniques like cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry (CA) were employed to evaluate the oxidation of ethanol. Results showed that PtPd/PPy/NGO exhibits improved electrocatalytic activity and stability for ethanol oxidation. Enhanced active surface area of the PtPd/PPy/NGO electrode (35.1 m2 g?1) contributes to increase in current density and decrease in over potential values in the ethanol oxidation as compared to PtPd electrocatalyst.  相似文献   

11.
石墨烯是一种具有高比表面积、高导电性和良好化学稳定性的新型二维碳材料,在电化学储能领域具有广阔的应用前景。氮原子掺杂可以制造结构缺陷并改变电荷分布,有利于增强其电化学储能性能。本工作以尿素为氮源,与氧化石墨烯混合冻干,经过高温热还原制备出氮掺杂石墨烯材料,研究了热还原温度对其化学组成、形貌结构以及电化学储锂性能的影响。研究结果表明,随着热还原温度的升高,材料的氮含量下降,石墨化程度升高,电导率提高。将其作为负极材料组装成锂离子半电池进行测试,样品N-rGO-800在0.05 A/g的电流密度下表现出高达876 mA·h/g的稳定比容量,优于目前文献报道的比容量。在1 A/g的大电流密度下,其依然具有584 mA·h/g的比容量,经过850圈的长循环,容量保持稳定,显示出该材料优异的循环和倍率性能。  相似文献   

12.
As a candidate for hydrogen storage medium, Li decorated graphene with experimentally realizable nitrogen defects was investigated for geometric stability and hydrogen capacity using density functional theory (DFT) calculations. Among the three types of defective structures, it is expected that Li metal atoms are well dispersed on the graphene sheets with pyridinic and pyrrolic defects without clustering as the bond strength of Li on pyridinic and pyrrolic N-doped graphene layers is higher than the cohesive energy of the Li metal bulk. The two stable structures were found to exhibit hydrogen uptake ability up to three H2 per Li atom. The binding energies of the hydrogen molecules for these structures were in the range of 0.12–0.20 eV/H2. These results demonstrate that a Li/N-doped graphene system could be used as a hydrogen storage material.  相似文献   

13.
Here, we demonstrates the fabrication of binder free and very efficient supercapacitor electrode based on tungsten nitride (W2N) thin film on stainless steel (SS) substrate using reactive sputtering technique. W2N thin film as a working electrode exhibits high specific capacitance (163 F g−1 at 0.5 mA cm−2 in 1 M H2SO4) along with excellent cycling stability. The binder free symmetric supercapacitor (W2N||W2N) device delivers a high specific capacitance (80 Fg-1) and long life span (90.46% capacitance retention after 10,000 cycles) along with high energy (12.92 Whkg−1) and power (∼674 kWkg−1 at 9.36 Whkg−1) densities. These observed excellent electrochemical performances of the present W2N thin film based supercapacitor device, recommend it as a potential candidate for energy storage applications.  相似文献   

14.
In this contribution, we reported the preparation of a novel conducting polymer hydrogel (CPH) by a sol-gel method, which was subsequently employed to fabricate a flexible all-solid-state supercapacitor device. Taking advantage of the synergistic effects of the different components in the conducting polymer hydrogel and the merits of the proposed synthesis strategies, the prepared supercapacitor device with CPH as electrode exhibited high area-normalized capacitance (2.2 F cm−2), high gravimetric capacitance (1573.6 F g−1) as well as high energy density of 0.18 mWh cm−2 (or 128.7 Wh Kg−1) at 0.08  mW cm−2 (or 55.1 W kg−1). This study did not only represent a novel all-solid-state, high performance, flexible supercapacitor with potential applications in flexible energy-related devices, but also developed a new method for enhancing capacitances and mechanical stability of all-solid-state flexible supercapacitor.  相似文献   

15.
Three-dimensional graphene@Ni(OH)2 nanoflake array grown on Ni foam (G/Ni(OH)2/NF) as a binder-free electrode of supercapacitor was prepared by combining a one-step hydrothermal approach and Radio frequency (RF) magnetron sputtering technique. Its electrochemical properties were further investigated by the cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectra. The G/Ni(OH)2/NF showed high specific capacitance (4.0F/cm2 at 1.0 mA/cm2), good rate charge-discharge capability and long cycling stability (ca. 90.6% of its initial value). This work provides a new method to prepare 3D porous electrode materials based on graphene for application in electrochemical energy storage.  相似文献   

16.
Waste sugar solution is a by-product in the process of manufacturing vitamin C. Nowadays, the unused industrial waste residues are transformed into high efficient energy storage devices, such as supercapacitors electrodes, which are worth exploring because they are consistent with the concept of green and sustainable development. In this paper, a nitrogen-doped hierarchical porous carbon are obtained via pre-carbonization and KOH activation. The as-prepared material, possessed proper pore size distribution, large specific surface area and nitrogen-doping, exhibits good electrochemical performance, such as a high specific capacitance of 342 F g−1 (0.1 A g−1), good stability with 95% capacitance retention after 15,000 cycles in 6 M KOH. Moreover, the supercapacitors deliver a high energy density of 25.6 and 65.9 W h kg−1 in the 1 M Na2SO4 and EMIMBF4, respectively. The good electrochemical performance illustrates that the nitrogen-doped hierarchically porous carbon derived from the waste sugar solution is a potential candidate for energy storage.  相似文献   

17.
Herein, reduced graphene oxide supported well-dispersed bimetallic AuPt alloy nanodendrites (AuPt ANDs/rGO) were fabricated by a one-pot coreduction approach using ionic liquid (1-aminopropyl-3-methylimidazolium bromide, [APMIm]Br) as the stabilizer and capping agent. There is no any other polymer or seed involved. Characterized measurements include transmission electron microscopy (TEM), high angle annular dark-field scanning TEM (HAADF-STEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The typical samples displayed excellent electrocatalytic activity and durability towards hydrogen evolution reaction (HER) and methanol oxidation reaction (MOR) in contrast with Pt nanocrystals/rGO and commercial Pt/C (50%) catalysts, which make it promising for practical catalysis in energy conversion and storage.  相似文献   

18.
The development of bifunctional electrochemically-active materials for both hydrogen evolution reaction (HER) and supercapacitors enables the possibility to integrate energy storage and production into one single system. Here, we report a novel bifunctional mesoporous Ni2P nanobelt-like architecture prepared via the hydrothermal synthesis of Ni(SO4)0.3(OH)1.4 nanobelt precursor and subsequent low temperature phosphorization process under Ar atmosphere. Composed of numerous cross-linked Ni2P nanoparticles, the as-obtained Ni2P nanobelts exhibit a two dimensional leaf-like morphology, allowing remarkable enhancement of mesoporosity as well as active surface area. The HER electrocatalytic test in acid medium show a current density of 16 mA cm?2 at an overpotential of 187 mV, Tafel slope of 62 mV dec?1 and long-term durability. Investigation of this Ni2P nanobelts as supercapacitor materials in 2M KOH electrolyte display a high specific capacity ranging from 1074 F g?1 at 0.625 A g?1 to 554 F g?1 at 25 A g?1, and notable cycling life with 86.7% retention after 3000 cycles at 10 A g?1. With the simplicity of the synthetic routine and the outstanding performance as both HER catalysts and supercapacitors, the Ni2P nanobelts provide promising potential for energy devices.  相似文献   

19.
Approaches for constructing efficient and stable proton transfer highways in polymer materials are urgently desirable and required for elevated-temperature polymer electrolyte membrane fuel cell (PEMFC). Herein, ionic liquid intercalated GO (IGO) with acceptable fluidity is synthesized by a facile one-pot method and then utilized to construct anhydrous transfer highways in polymer-based composite membrane. The basic-imidazole-cation-containing ionic liquid (IL) increases the flexibility of IGO and meanwhile reinforces the interaction with acidic sulfonated poly(ether ether ketone) (SPEEK) matrix, thus yielding more proportion of perpendicularly oriented IGO and the subsequent formation of 3-D cross-linked IGO networks. The IL molecules act as effective proton carrier sites along IGO networks, and in this way, efficient and long-range transfer highways for “bulk in-plane” proton conduction are constructed. SP-(25I-GO)-10% achieves the maximum conductivity of 7.29 mS cm?1 at 150 °C, 10 times higher than that of SPEEK control membrane. Meanwhile, the maximum current density and power density of SP-(25I-GO)-10% at 90 °C are 574.1 mA cm?2 and 145.1 mW cm?2, increased by 48% and 102% compared with that of SPEEK control membrane, respectively. Additionally, the nanoconfined effect of interlayer renders composite membrane enhanced IL retention ability through capillary force, consequently stable proton conduction and single cell behavior.  相似文献   

20.
Mixed Pd–Au bimetallic nanoparticles embedded nitrogen doped graphene composites (PdAu/NG180) are explored for efficient electrocatalytic oxidation of methanol. A simple hydrothermal one-pot polyol method, involving simultaneous reduction of both Pd and Au, is utilized for the synthesis of Pd20-xAux/NG180 (x wt % = 0, 5, 10 and 15). This method is of multiple advantages such as inexpensiveness, reagent-free and environment-friendly being surfactant free. The morphology, crystal structure and chemical composition of NG180, Pd/NG180 and Pd20-xAux/NG180 catalysts are analyzed by XRD, FESEM-EDX, TEM, XPS and Raman spectroscopy methods. Electrocatalytic activities of PdAu/NG180 nanocomposites toward methanol oxidation reaction (MOR) in alkaline media are investigated by cyclic voltammetry, chronoamperometry and CO stripping measurements. Pd20-xAux/NG180 exhibited an increase in the electroactive surface area of Pd to twice by the coexistence of Au. In cyclic voltammetry studies, Pd10Au10/NG180 catalyst exhibits highest peak current density for MOR and is 1.5 times highly efficient compared to Pd20/NG180 with an enhanced shift in the onset potential by 140 mV to lower overpotentials. Besides, Pd10Au10/NG180 catalyst exhibited enhanced electroactive surface area and long-time durability in comparison to Pd20/NG180 catalyst. The steady state current density for MOR observed with Pd10Au10/NG180 at the end of 4000 s (98 mA mg−1Pd) is higher than those observed with all the other catalysts at the end of mere 1000 s alone (97, 61, and 32 mA mg−1Pd). The promising high electrocatalytic activity of Pd10Au10/NG180 is well corroborated from CO stripping experiments that the specific adsorption of CO onto Pd10Au10/NG180 (0.71 C m−2) is merely half to that observed onto Pd20/NG180 (1.49 C m−2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号