首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biohydrogen (H2) production in batch experiments under varying concentrations of raw and ozonated palm oil mill effluent (POME) of 5000–30,000 mg COD.L−1, at initial pH 6, under mesophilic (37 °C), thermophilic (55 °C) and extreme-thermophilic (70 °C) conditions. Effects of ozone pretreatment, substrate concentration and fermentation temperature on H2 production using mesophilic seed sludge was undertaken. The results demonstrated that H2 can be produced from both raw and ozonated POME, and the amounts of H2 production were directly increased as the POME concentrations were increased. H2 was successfully produced under the mesophilic fermentation of ozonated POME, with maximum H2 yield, and specific H2 production rate of 182 mL.g−1 CODremoved (30,000 mg COD.L−1) and 6.2 mL.h−1.g−1 TVS (25,000 mg COD.L−1), respectively. Thus, indicating that the ozone pretreatment could elevate on the biodegradability of major constituents of the POME, which significantly enhanced yields and rates of the H2 production. H2 production was not achieved under the thermophilic and extreme-thermophilic fermentation. In both fermentation temperatures with ozonated POME, the maximum H2 yield was 62 mL.g−1 CODremoved (30,000 mg COD.L−1) and 63 mL.g−1 CODremoved (30,000 mg COD.L−1), respectively. The highest efficiency of total and soluble COD removal was obtained at 44 and 37%, respectively following the mesophilic fermentation, of 24 and 25%, respectively under the thermophilic fermentation, of 32 and 20%, respectively under the extreme-thermophilic fermentation. The production of volatile fatty acids increased with an increased fermentation time and temperature in both raw and ozonated POME under all three fermentation temperatures. The accumulation of volatile fatty acids in the reactor content were mostly acetic and butyric acids. H2 fermentation under the mesophilic condition of 37 °C was the better selection than that of the thermophilic and extreme-thermophilic fermentation.  相似文献   

2.
Dark fermentative biohydrogen production in a thermophilic, xylose-fed (50 mM) fluidised bed reactor (FBR) was evaluated in the temperature range 55–70 °C with 5-degree increments and compared with a mesophilic FBR operated constantly at 37 °C. A significantly higher (p = 0.05) H2 yield was obtained in the thermophilic FBR, which stabilised at about 1.2 mol H2 mol?1 xylose (36% of the theoretical maximum) at 55 and 70 °C, and at 0.8 mol H2 mol?1 xylose at 60 and 65 °C, compared to the mesophilic FBR (0.5 mol H2 mol?1 xylose). High-throughput sequencing of the reverse-transcribed 16S rRNA, done for the first time on biohydrogen producing reactors, indicated that Thermoanaerobacterium was the prevalent active microorganism in the thermophilic FBR, regardless of the operating temperature. The active microbial community in the mesophilic FBR was mainly composed of Clostridium and Ruminiclostridium at 37 °C. Thermophilic dark fermentation was shown to be suitable for treatment of high temperature, xylose-containing wastewaters, as it resulted in a higher energy output compared to the mesophilic counterpart.  相似文献   

3.
The influence of different inoculum pretreatments (pH and temperature shocks) on mesophilic (37 °C) and thermophilic (55 °C) dark fermentative H2 production from xylose (50 mM) and, for the first time, on the composition of the active microbial community was evaluated. At 37 °C, an acidic shock (pH 3, 24 h) resulted in the highest yield of 0.8 mol H2 mol?1 xylose. The H2 and butyrate yield correlated with the relative abundance of Clostridiaceae in the mesophilic active microbial community, whereas Lactobacillaceae were the most abundant non-hydrogenic competitors according to RNA-based analysis. At 55 °C, Clostridium and Thermoanaerobacterium were linked to H2 production, but only an alkaline shock (pH 10, 24 h) repressed lactate production, resulting in the highest yield of 1.2 mol H2 mol?1 xylose. This study showed that pretreatments differentially affect the structure and productivity of the active mesophilic and thermophilic microbial community developed from an inoculum.  相似文献   

4.
Methane (CH4) production from palm oil mill effluent (POME) pre-treated by ozonation was conducted under mesophilic (37 °C) condition. The results demonstrated that methane can be produced from both non-ozonated and ozonated POME at a concentration range of 3,000 to 15,000 mg COD L−1. Methane yield rised 54% when POME was pre-treated by ozonation at POME concentration of 15,000 mg COD L−1. The methane yield increased the POME concentration was increased. At POME above 15,000 mg COD L−1, the methane yield was dropped dramatically. The methane production rates (Rmax) and yields exerted similar trend regarding the POME concentration. Accumulation of volatile fatty acids in the reactor posed the drop of methane production. Ozonation pretreatment process of POME can improve the biodegradability of the complex organic matter in POME and enhanced methane yield and rate at POME concentration range of 3,000–15,000 mg COD L−1.  相似文献   

5.
A start-up study was conducted to produce biohydrogen and biomethane from Palm Oil Mill Effluent (POME) using a two-stage up-flow anaerobic sludge fixed-film (UASFF) bioreactor. 100% molasses was used to start the system, and POME was added at 10% increments until it reached 100% after 59 days. During this period of continuous operation, the HRT and temperature were adjusted in order to optimize the condition for biogas production. Hydrogen and methane gas production fluctuated between 53–70% and 90–95%, respectively, in the last four days of operation (days 56–59), with POME percentage being increased from 70% to 100% (30%–0% molasses). Using 100% raw POME led to a total COD removal of 83.70%, average gas production rates of 5.29 L H2 d−1 (57.11% H2) and 9.60 L CH4 d−1 (94.08% CH4), in their respective units. This output is comparable to, if not better than using 100% molasses as substrate. This work concludes that based on the relative consistency of biogas production on days 56–59, the two-stage UASFF bioreactor operating at a final HRT of 4 h and temperature of 43 °C has taken a period of two months for start-up.  相似文献   

6.
The production of biohydrogen through dark fermentation of palm oil mill effluent (POME) was evaluated in two-stages of biohydrogen in an anaerobic sequencing batch reactor (ASBR) system using enriched mixed culture for the first time. This study attempts to examine the effect of HRT and its interaction behavior with the solid retention time (SRT), and the sugar consumption. The effluent after discharged from the thermophilic reactor contained 7.61 g/L TC and 22.87 g/L TSS was fed to the secondary mesophilic reactor system. Results indicated that the overall sugar consumption reached 88.62% at the optimum HRT of 12 h with the SRT set to 20 h. The optimum hydrogen yield and HPR in the thermophilic stage were 2.99 mol H2/mol-sugar and 8.54 mmol H2/L·h respectively, while for the mesophilic stage were 1.19 mol H2/mol-sugar and 1.47 mmolH2/L·h respectively. The overall HPR showed an improvement and increase from 8.54 mmol H2/L·h to 10.34 mmol H2/L.h. Microbial community analysis of mixed culture in the two-stage thermophilic (55.0 °C) and mesophilic (37.0 °C) ASBR reactor was dominated by Thermoanaerobacterium sp. based on the PCR-DGGE technique.  相似文献   

7.
Enhancement of biological H2 production efficiency with pre-ozonation process of palm oil mill effluent (POME) prior to thermophilic dark fermentation (55 °C) was investigated. H2 fermentation experiments were conducted using varying concentrations of raw and ozonated POME. Results revealed that H2 can be produced from both raw and ozonated POME under thermophilic fermentation. Maximum H2 production yield of 77 mL.g−1CODremoved was obtained from ozonated POME, which was higher than that of 51 mL·g−1 CODremoved obtained from raw POME at the highest concentration of 35,000 mg COD.L−1. Meanwhile, the specific H2 production rate (R'max) of 1.9 and 1.5 mL·h−1·g−1 TVS were observed in raw and ozonated POME at the concentration of 25,000 mg COD.L−1, respectively. The main metabolic products during POME fermentation were acetic and butyric acids and trace amount of valeric acid. Propionic acid and ethanol have contributed, which could be reduced H2 production in all batch experiments for both POME. The highest efficiency of total and soluble COD removal of 24 and 25% was obtained from the raw POME, and those of 19 and 25% was obtained from the ozonated POME. The present study demonstrates that the POME loading was greatly influenced on the H2 production yields and rates. The comparative results showed that the ozonated POME gave higher H2 yields than the raw POME. Thus, demonstrating that the ozonation process significantly improved the POME biodegradability, which is able to enhance H2 production yields. However, the ozone pre-treatment was not improved in the specific H2 production rates.  相似文献   

8.
The present paper reports on results obtained from experiments carried out in a laboratory-scale anaerobic packed bed biofilm reactor (APBR), with recirculation of the liquid phase, for continuously biohydrogen production via dark fermentation. The reactor was filled with Kaldnes® biofilm carrier and inoculated with an anaerobic mesophilic sludge from a urban wastewater treatment plant (WWTP). The APBR was operated at a temperature of 37 °C, without pH buffering. The effect of theoretical hydraulic retention time (HRT) from 1 to 5 h on hydrogen yield (HY), hydrogen production rate (HPR), substrate conversion and metabolic pathways was investigated. This study indicates the possibility of enhancing hydrogen production by using APBR with recirculation flow. Among respondents values of HRT the highest average values of HY (2.35 mol H2/mol substrate) and HPR (0.085 L h?1L?1) have been obtained at HRT equal to 2 h.  相似文献   

9.
The co-fermentation of vinasse and cheese whey (CW) was evaluated in this study by using two thermophilic (55° C) anaerobic fluidized bed reactors (AFBRs). In AFBR using vinasse and CW (AFBR-V-CW), the CW was added in increasing proportions (2, 4, 6, 8, and 10 g COD.L?1) to vinasse (10 g COD.L?1) to assess the advantage of adding CW to vinasse. By decreasing the hydraulic retention time (HRT) from 8 h to 1 h in AFBR-V, maximum hydrogen yield (HY), production rate (HPR), and H2 content (H2%) of 1.01 ± 0.06 mmol H2.g COD?1, 2.54 ± 0.39 L H2.d?1.L?1, and 47.3 ± 2.9%, respectively, were observed at an HRT of 6 h. The increase in CW concentration to values over 2 g COD.L?1 in AFBR-V-CW decreased the HY, PVH, and H2%, with observed maximum values of 0.82 ± 0.07 mmol H2.g COD?1, 1.41 ± 0.24 L H2.d?1.L?1, and 55.5 ± 3.7%, respectively, at an HRT of 8 h. The comparison of AFBR-V-CW and AFBR-V showed that the co-fermentation of vinasse with 2 g COD.L?1 of CW increased the HPR, H2%, and HY by 117%, 68%, and 82%, respectively.  相似文献   

10.
Sago wastewater (SWW) causes pollution to the environment due to its high organic content. Annually, about 2.5 million tons of SWW is produced in Malaysia. In this study, the potential of SWW as a substrate for biohydrogen production by Enterobacter aerogenes (E. aerogenes) was evaluated. Response Surface Methodology (RSM) was employed to find the optimum conditions. From preliminary optimization, it was found that the most significant factors were yeast extract, temperature, and inoculum size. According to Face Centered Central Composite Design (FCCCD), the maximum hydrogen concentration and yield were 630.67 μmol/L and 7.42 mmol H2/mol glucose, respectively, which is obtained from the sample supplemented with 4.8 g/L yeast extract concentration, 5% inoculum, and incubated at the temperature of 31 °C. Cumulative hydrogen production curve fitted by the modified Gompertz equation suggested that Hmax, Rmax, and λ from this study were 15.10 mL, 2.18 mL/h, and 9.84 h, respectively.  相似文献   

11.
Ozone pretreatment of palm oil mill effluent (POME) was employed to improve sustrate biodegradability prior to biological H2 production. The H2 production was conducted at varing pHs from 4.0 to 6.0 to examine the impact of pH on the H2 mesophilic production (37 °C). The optimal pH for H2 production was 6.0 for both raw and ozonated POME. The POME concentrations were greatly influenced the yields and rates of H2 production. At the optimal pH, the maximum H2 production yield of 182 ± 7.2 mL.g−1 COD (7.96 mmoL.g−1 COD) was achieved at the ozonated POME concentration of 30,000 mg COD.L−1. The maximum H2 production rate (Rmax) of 43.1 ± 2.5 mL.h−1 was obtained at the ozonated POME concentration of 25,000 mg COD.L−1. The highest total COD removal was 44% at of 15,000 mg COD.L−1 ozonated POME. Acetic and butyric acids were dominant products during H2 fermentation and tended to increase with the increased POME concentrations. Ozonation as a pretreatment process showed significant enhancement of the POME biodegradability , and subsequently improved the H2 production H2.  相似文献   

12.
In the present study, a new mesophilic bacterial strain, identified as Bacillus anthracis strain PUNAJAN 1 was isolated from palm oil mill effluent (POME) sludge, and tested for its hydrogen production ability. Effect of physico-chemical factors such as temperature, initial pH, nitrogen source and carbon sources were investigated in order to determine the optimal conditions for hydrogen production. The maximum hydrogen yield of 2.42 mol H2/mol mannose was obtained at 35 °C and initial pH of 6.5. Yeast and mannose were used as the main carbon and nitrogen sources respectively in the course of the hydrogen production. Apart from synthetic substrate, specific hydrogen production potentials of the strain using POME was calculated and found to be 236 ml H2/g chemical oxygen demand (COD). The findings of this study demonstrate that the indigenous strain PUNAJAN 1 could be a potential candidate for hydrogen using POME as substrate.  相似文献   

13.
Acetone-butanol-ethanol (ABE) fermentation guarantees a sustainable route for biohydrogen and biobutanol production. This research work is committed towards the enhancement of biohydrogen and biobutanol production by single and multi-parameter optimization for the improvement of substrate energy recovery using C. saccharoperbutylacetonicum. Single parameters optimization (SPO) manifested that headspace of 60% (v/v) and butyric acid supplementation of 9 g/L and temperatures of 30 °C and 37 °C were suitable for obtaining maximum biohydrogen and biobutanol production, respectively. The interaction between these parameters was further evaluated by implementing a 5-level 3-factor Central Composite Design (CCD). In the present study, a central composite design was employed to enhance the biohydrogen and biobutanol production. In addition, the experimental results were analyzed by response surface methodology (RSM) and artificial intelligence (AI) techniques such as artificial neural network (ANN). The prediction capability of RSM was further compared with ANN for predicting the optimum parameters that would lead to maximum biohydrogen and biobutanol production. ANN yielded higher values of biohydrogen and biobutanol. ANN was found to be superior as compared to RSM in terms of prediction accuracy for both biohydrogen and biobutanol because of its higher coefficient of determination (R2) and lower root mean square error (RMSE) value. Process temperature (32.65 °C), headspace (58.21% (v/v)) and butyric acid supplementation (9.16 g/L) led to maximum substrate energy recovery of 78% with biohydrogen and biobutanol production of 5.9 L/L and 16.75 g/L, respectively. Process parameter optimization led to a significant increase in substrate energy recovery from Biphasic fermentation.  相似文献   

14.
The current work describes a novel application of steam reforming process to treat palm oil mill effluent (POME), whilst co-generating H2-rich syngas from the treatment itself. The effects of reaction temperature, partial pressure of POME and gas-hourly-space-velocity (GHSV) were determined. High crystallinity 20 wt%Ni/80 wt%Al2O3 catalyst with smooth surface was prepared via impregnation method. Baseline runs revealed that the prepared catalyst was highly effective in destructing organic compounds, with a two-fold enhancement observed in the presence of 20 wt% Ni/80 wt%Al2O3 catalyst, despite its low specific surface area (2.09 m2 g?1). In addition, both the temperature and partial pressure of POME abet the COD reduction. Consequently, the highest COD reduction of 99.7% was achieved, with a final COD level of 73 ± 5 ppm from 27,500 ppm, at GHSV of 40,000 mL/h.gcat and partial pressure of POME equivalent to 95 kPa at 1173 K. In terms of gaseous products, H2 was found to be the major component, with selectivity ranged 51.0%–70.9%, followed by CO2 (17.7%–34.1%), CO (7.7%–18.4%) and some CH4 (0.6%–3.3%). Furthermore, quadratic models with high R2-values were developed.  相似文献   

15.
A simultaneous saccharification and fermentation (SSF) process was applied for thermophilic bio-hydrogen production from lime-pretreated oil palm trunk (OPT) by Thermoanaerobacterium thermosaccharolyticum KKU19. The SSF hydrogen fermentation conditions were optimized to maximize hydrogen yield (HY). Based on Plackett-Burman design, substrate loading and initial pH had significant effects on HY. The substrate loading and initial pH were further optimized using response surface methodology with a central composite design. The optimum conditions were a substrate loading, enzyme loading, inoculum concentration, initial pH and temperature of 4.6%, 10 filter paper unit (FPU)/g-OPT, 10% (v/v), 6.3 and 50 °C, respectively, which yielded the highest HY of 60.22 mL H2/g-OPT. Structural analysis showed that lime pretreatment and SSF decreased the crystallinity of OPT. Methane production was carried out following the hydrogen production to improve the energy yield from OPT. The results showed that methane production increased total energy yield from 0.65 to 11.79 kJ/g-OPT under the optimal conditions.  相似文献   

16.
A start-up study of lab-scale up-flow anaerobic sludge blanket fixed-film reactor (UASFF) was conducted to produce biohydrogen from palm oil mill effluent (POME). The reactor was fed with POME at different hydraulic retention time (HRT) and organic loading rate (OLR) to obtain the optimum fermentation time for maximum hydrogen yield (HY). The results showed the HY, volumetric hydrogen production rate (VHPR), and COD removal of 0.5–1.1 L H2/g CODconsumed, 1.98–4.1 L H2 L?1 day?1, and 33.4–38.5%, respectively. The characteristic study on POME particles was analyzed by particle size distribution (PSD), Scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDX). The microbial Shannon and Simpson diversity indices and Principal Component Analysis assessed the alpha and beta diversity, respectively. The results indicated the change of bacterial community diversity over the operation, in which Clostridium sensu stricto 1 and Lactobacillus species were contributed to hydrogen fermentation.  相似文献   

17.
This study evaluates the influence of metal and metal-oxide nanoparticles (NPs) on biogas production from green microalgae Enteromorpha. The concentration of metallic NPs (Ni, Co) was 1 mg/L and oxides NPs (Fe3O4, MgO) was 10 mg/L. An anaerobic digestion was carried out batch-wise with working volume, operating temperature, mixing rate and hydraulic retention time as 500 ml, 37 °C, 150 rpm and 170 h, respectively. The measurements of chemical oxygen demand (COD), volatile fatty acids (VFAs), reducing sugar and biogas production were observed to monitor effectivity of nanoparticles. The results showed that NPs has moderate positive influence in biogas production until 60 h of retention time but significantly improve afterward. The maximum total biogas yield of 624 ml was achieved by Fe3O4 NPs whereas highest biohydrogen, 51.42% (v/v) was achieved by Ni NPs. The cumulative increase in biogas production for Fe3O4, Ni, Co and MgO NPs was 28%, 26%, 9% and 8%, respectively. A modified Gompertz and Logistic function model were used to determine kinetic constants of the reaction. The logistic model has the better predicting ability for microalgae anaerobic digestion.  相似文献   

18.
The study evaluates the biohydrogen production from herbal wastewater as the substrate by the enriched mixed slaughterhouse sludge as the seed source. In the following experiments, batch-fermentations are carried out with the optimum substrate concentrations, fermentation pH and fermentation temperature to observe the effects of H2 production, hydrogen yield and other fermentation end products at different conditions. The hydrogen production is increased as substrate concentration increased up to 8 g COD/L WW, but drastically decreased at 10 g COD/L WW. When the pH of fermentation is controlled to 6.5, a maximum amount of hydrogen yield could be obtained. The hydrogen production is maximum at 50 °C (930 ± 30 mL/L WW) compared to 30 °C (436 ± 16 mL/L WW). Acid-forming pathway with butyric acid as a major metabolite dominated the metabolic flow during the hydrogen production. The experimental results indicated that effective hydrogen production from the herbal wastewater could be obtained by thermophilic acidogenesis at proper operational conditions.  相似文献   

19.
This study aims to investigate the effect of substrate concentration and hydraulic retention time (HRT) on hydrogen production in a continuous anaerobic bioreactor from unhydrolyzed common reed (Phragmites australis) an invasive wetland and perennial grass. The bioreactor has capacity of 1 L and working volume of 600 mL. It was operated at pH 5.5, temperature at 37 °C, hydraulic retention time (HRT) 12 h, and variation of substrate concentration from 40, 50, and 60 g COD/L, respectively. Afterward, the HRT was then varied from 12, 8, to 4 h for checking the optimal biohydrogen production. Each condition was run until reach steady state on hydrogen production rate (HPR) which based on hydrogen percentage and daily volume. The results were obtained the peak of substrate concentration was at the 50 g COD/L with HRT 12 h, average HPR and H2 concentration were 28.71 mL/L/h and 36.29%, respectively. The hydrogen yield was achieved at 106.23 mL H2/g CODre. The substrate concentration was controlled at 50 g COD/L for the optimal HRT experiments. It was found that the maximum of average HPR and H2 concentration were 43.28 mL/L/h and 36.96%, respectively peak at HRT 8 h with the corresponding hydrogen yield of 144.35 mL H2/g CODre. Finally, this study successful produce hydrogen from unhydrolyzed common reed by enriched mixed culture in continuous anaerobic bioreactor.  相似文献   

20.
Substrate bioavailabity is one of the critical factors that determine the relative biohydrogen (bioH2) yield in fermentative hydrogen production and bioelectricity output in a microbial fuel cell (MFC). In the present undertaking, batch bioH2 production and MFC-based biolectricity generation from ultrasonically pretreated palm oil mill effluent (POME) were investigated using heat-pretreated anaerobic sludge as seed inoculum. Maximum bioH2 production (0.7 mmol H2/g COD) and COD removal (65%) was achieved at pH 7, for POME which was ultrasonically pretreated at a dose of 195 J/mL. Maximum value for bioH2 productivity and COD removal at this sonication dose was higher by 38% and 20%, respectively, than unsonicated treatments. In batch MFC experiments, the same ultrasound dose led to reduced lag-time in bioelectricity generation with concomitant 25% increase in bioelectricity output (18.3 W/m3) and an increase of COD removal from 30% to 54%, as compared to controls. Quantitative polymerase chain reaction (qPCR) tests on sludge samples from batch bioH2 production reflected an abundance of gene fragments coding for both clostridial and thermoanaerobacterial [FeFe]-hydrogenase. Fluorescence in situ hybridization (FISH) tests on sludge from MFC experiments showed Clostridium spp. and Thermoanaerobacterium spp. as the dominant microflora. Results suggest the potential of ultrasonicated POME as sustainable feedstock for dark fermentation-based bioH2 production and MFC-based bioelectricity generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号