共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the limited-buffer permutation flow shop scheduling problem (LBPFSP) with the makespan criterion. A hybrid variable neighborhood search (HVNS) algorithm hybridized with the simulated annealing algorithm is used to solve the problem. A method is also developed to decrease the computational effort needed to implement different types of local search approaches used in the HVNS algorithm. Computational results show the higher efficiency of the HVNS algorithm as compared with the state-of-the-art algorithms. In addition, the HVNS algorithm is competitive with the algorithms proposed in the literature for solving the blocking flow shop scheduling problem (i.e., LBPFSP with zero-capacity buffers), and finds 54 new upper bounds for the Taillard's benchmark instances. 相似文献
2.
This paper presents a novel discrete differential evolution (DDE) algorithm for solving the no-wait flow shop scheduling problems with makespan and maximum tardiness criteria. First, the individuals in the DDE algorithm are represented as discrete job permutations, and new mutation and crossover operators are developed based on this representation. Second, an elaborate one-to-one selection operator is designed by taking into account the domination status of a trial individual with its counterpart target individual as well as an archive set of the non-dominated solutions found so far. Third, a simple but effective local search algorithm is developed to incorporate into the DDE algorithm to stress the balance between global exploration and local exploitation. In addition, to improve the efficiency of the scheduling algorithm, several speed-up methods are devised to evaluate a job permutation and its whole insert neighborhood as well as to decide the domination status of a solution with the archive set. Computational simulation results based on the well-known benchmarks and statistical performance comparisons are provided. It is shown that the proposed DDE algorithm is superior to a recently published hybrid differential evolution (HDE) algorithm [Qian B, Wang L, Huang DX, Wang WL, Wang X. An effective hybrid DE-based algorithm for multi-objective flow shop scheduling with limited buffers. Computers & Operations Research 2009;36(1):209–33] and the well-known multi-objective genetic local search algorithm (IMMOGLS2) [Ishibuchi H, Yoshida I, Murata T. Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Transactions on Evolutionary Computation 2003;7(2):204–23] in terms of searching quality, diversity level, robustness and efficiency. Moreover, the effectiveness of incorporating the local search into the DDE algorithm is also investigated. 相似文献
3.
This paper presents a memetic algorithm with hybrid node and edge histogram (MANEH) to solve no-idle permutation flow shop scheduling problem (NIPFSP) with the criterion to minimize the maximum completion time (the makespan criterion). The MANEH mainly composes of two components: population-based global search and local refinements for individuals. At the initialization stage, a modified speed-up NEH method and the random initialization are utilized to generate more promising solutions with a reasonable running time. At the population-based global search stage, a random sample crossover is first proposed to construct a hybrid node and edge histogram matrix (NEHM) with superior solutions in the population, and then a new sequence is generated by sampling the NEHM or selecting jobs from a template sequence. At the local refinements stage, an improved general variable neighborhood search with the simulated annealing acceptance (GVNS-SA) is developed to improve the current best individual. The GVNS-SA adopts a random referenced local search in the inner loop and the probability of SA to decide whether accept the incumbent solution for the next iteration. Moreover, the influence of key parameters in the MANEH is investigated based on the approach of a design of experiments (DOE). Finally, numerical simulation based on the benchmark of Ruiz and thorough statistical analysis are provided. The comparisons between MANEH and some existing algorithms as well as MA-based algorithms demonstrate the effectiveness and superiority of the proposed MANEH in solving the NIPFSP. Furthermore, the MANEH improves 89 out of the 250 current best solutions reported in the literature. 相似文献
4.
M. Fatih Tasgetiren Quan-Ke Pan P.N. Suganthan Ozge Buyukdagli 《Computers & Operations Research》2013
This paper presents a variable iterated greedy algorithm (IG) with differential evolution (vIG_DE), designed to solve the no-idle permutation flowshop scheduling problem. In an IG algorithm, size d of jobs are removed from a sequence and re-inserted into all possible positions of the remaining sequences of jobs, which affects the performance of the algorithm. The basic concept behind the proposed vIG_DE algorithm is to employ differential evolution (DE) to determine two important parameters for the IG algorithm, which are the destruction size and the probability of applying the IG algorithm to an individual. While DE optimizes the destruction size and the probability on a continuous domain by using DE mutation and crossover operators, these two parameters are used to generate a trial individual by directly applying the IG algorithm to each target individual depending on the probability. Next, the trial individual is replaced with the corresponding target individual if it is better in terms of fitness. A unique multi-vector chromosome representation is presented in such a way that the first vector represents the destruction size and the probability, which is a DE vector, whereas the second vector simply consists of a job permutation assigned to each individual in the target population. Furthermore, the traditional IG and a variable IG from the literature are re-implemented as well. The proposed algorithms are applied to the no-idle permutation flowshop scheduling (NIPFS) problem with the makespan and total flowtime criteria. The performances of the proposed algorithms are tested on the Ruben Ruiz benchmark suite and compared to the best-known solutions available at http://soa.iti.es/rruiz as well as to those from a recent discrete differential evolution algorithm (HDDE) from the literature. The computational results show that all three IG variants represent state-of-art methods for the NIPFS problem. 相似文献
5.
An effective hybrid discrete differential evolution algorithm for the flow shop scheduling with intermediate buffers 总被引:1,自引:0,他引:1
In this paper, an effective hybrid discrete differential evolution (HDDE) algorithm is proposed to minimize the maximum completion time (makespan) for a flow shop scheduling problem with intermediate buffers located between two consecutive machines. Different from traditional differential evolution algorithms, the proposed HDDE algorithm adopted job permutation to represent individuals and applies job-permutation-based mutation and crossover operations to generate new candidate solutions. Moreover, a one-to-one selection scheme with probabilistic jumping is used to determine whether the candidates will become members of the target population in next generation. In addition, an efficient local search algorithm based on both insert and swap neighborhood structures is presented and embedded in the HDDE algorithm to enhance the algorithm’s local searching ability. Computational simulations and comparisons based on the well-known benchmark instances are provided. It shows that the proposed HDDE algorithm is not only capable to generate better results than the existing hybrid genetic algorithm and hybrid particle swarm optimization algorithm, but outperforms two recently proposed discrete differential evolution (DDE) algorithms as well. Especially, the HDDE algorithm is able to achieve excellent results for large-scale problems with up to 500 jobs and 20 machines. 相似文献
6.
This paper proposes hybrid differential evolution (HDE) algorithms for solving the flexible job shop scheduling problem (FJSP) with the criterion to minimize the makespan. Firstly, a novel conversion mechanism is developed to make the differential evolution (DE) algorithm that works on the continuous domain adaptive to explore the problem space of the discrete FJSP. Secondly, a local search algorithm based on the critical path is embedded in the DE framework to balance the exploration and exploitation by enhancing the local searching ability. In addition, in the local search phase, the speed-up method to find an acceptable schedule within the neighborhood structure is presented to improve the efficiency of whole algorithms. Extensive computational results and comparisons show that the proposed algorithms are very competitive with the state of the art, some new best known solutions for well known benchmark instances have even been found. 相似文献
7.
This paper proposes a hybrid metaheuristic for the minimization of makespan in permutation flow shop scheduling problems. The solution approach is robust, fast, and simply structured, and comprises three components: an initial population generation method based on a greedy randomized constructive heuristic, a genetic algorithm (GA) for solution evolution, and a variable neighbourhood search (VNS) to improve the population. The hybridization of a GA with VNS, combining the advantages of these two individual components, is the key innovative aspect of the approach. Computational experiments on benchmark data sets demonstrate that the proposed hybrid metaheuristic reaches high-quality solutions in short computational times. Furthermore, it requires very few user-defined parameters, rendering it applicable to real-life flow shop scheduling problems. 相似文献
8.
9.
求解流水车间批量流集成调度的离散入侵杂草优化算法 总被引:1,自引:0,他引:1
提出一种离散入侵杂草优化算法,用来解决最大完工时间目标的流水车间批量流集成调度问题.该调度问题包含两个紧密耦合的子问题:批次分割问题和考虑启动时间的批次调度问题.设计了两段字符串编码,用来表示两个子问题.与基本入侵杂草优化算法不同,所提算法基于适应度和年龄确定杂草种子数量,基于正切函数和连续邻域操作产生种子.8种邻域算子的混合应用与局部搜索增强了算法的求解能力.仿真实验表明了所提算法的有效性. 相似文献
10.
In this paper hybrid flow shop scheduling problem with two agents is studied and its feasibility model is considered. A two-phase neighborhood search (TNS) algorithm is proposed to minimize objectives of two agents simultaneously under the given upper bounds. TNS is constructed through the combination of multiple variable neighborhood mechanisms and a new perturbation strategy for new current solution. A new replacement principle is also applied to decide if the current solution can be updated. TNS is tested on a number of instances and compared with the existing methods. The computational results show the promising advantage of TNS on the considered problem. 相似文献
11.
A hybrid harmony search algorithm for the blocking permutation flow shop scheduling problem 总被引:1,自引:0,他引:1
This paper proposes a hybrid modified global-best harmony search (hmgHS) algorithm for solving the blocking permutation flow shop scheduling problem with the makespan criterion. First of all, the largest position value (LPV) rule is proposed to convert continuous harmony vectors into job permutations. Second, an efficient initialization scheme based on the Nawaz-Enscore-Ham (NEH) heuristic is presented to construct the initial harmony memory with a certain level of quality and diversity. Third, harmony search is employed to evolve harmony vectors in the harmony memory to perform exploration, whereas a local search algorithm based on the insert neighborhood is embedded to enhance the local exploitation ability. Moreover, a new pitch adjustment rule is developed to well inherit good structures from the global-best harmony vector. Computational simulations and comparisons demonstrated the superiority of the proposed hybrid harmony search algorithm in terms of solution quality. 相似文献
12.
以调度的总流水时间为优化目标, 提出一种混合差分进化算法。 首先, 建立无等待流水车间调度的问题模型,并用快速方法评估总流水时间指标。 其次,采用LPV规则,实现离散问题的连续编码; 用差分进化算法对总流水时间指标执行优化;引入插入邻域和基于pairwise的局部搜索算法, 分别对差分进化算法产生的新个体和差分进化算法的最优解执行邻域搜索, 达到优化目标全局和局部的最优。 最后,通过计算标准算例, 并与其他算法比较, 验证该混合差分进化算法的有效性。 相似文献
13.
The multistage hybrid flow shop (HFS) scheduling problems are considered in this paper. Hybrid flowshop scheduling problems were proved to be NP-hard. A recently developed cuckoo search (CS) metaheuristic algorithm is presented in this paper to minimize the makespan for the HFS scheduling problems. A constructive heuristic called NEH heuristic is incorporated with the initial solutions to obtain the optimal or near optimal solutions rapidly in the improved cuckoo search (ICS) algorithm. The proposed algorithm is validated with the data from a leading furniture manufacturing company. Computational results show that the ICS algorithm outperforms many other metaheuristics. 相似文献
14.
15.
This paper addresses a sub-population based hybrid monkey search algorithm to solve the flow shop scheduling problem which has been proved to be non-deterministic polynomial time hard (NP-hard) type combinatorial optimization problems. Minimization of makespan and total flow time are the objective functions considered. In the proposed algorithm, two different sub-populations for the two objectives are generated and different dispatching rules are used to improve the solution quality. To the best of our knowledge, this is the first application of monkey search algorithm to solve the flow shop scheduling problems. The performance of the proposed algorithm has been tested with the benchmark problems addressed in the literature. Computational results reveal that the proposed algorithm outperforms many other heuristics and meta-heuristics addressed in the literature. 相似文献
16.
An effective hybrid DE-based algorithm for multi-objective flow shop scheduling with limited buffers
This paper proposes an effective hybrid algorithm based on differential evolution (DE), namely HDE, to solve multi-objective permutation flow shop scheduling problem (MPFSSP) with limited buffers between consecutive machines, which is a typical NP-hard combinatorial optimization problem with strong engineering background. Firstly, to make DE suitable for solving scheduling problems, a largest-order-value (LOV) rule is presented to convert the continuous values of individuals in DE to job permutations. Secondly, after the DE-based exploration, an efficient local search, which is designed based on the landscape of MPFSSP with limited buffers, is applied to emphasize exploitation. Thus, not only does the HDE apply the parallel evolution mechanism of DE to perform effective exploration (global search) in the whole solution space, but it also adopts problem-dependent local search to perform thorough exploitation (local search) in the promising sub-regions. In addition, the concept of Pareto dominance is used to handle the updating of solutions in sense of multi-objective optimization. Moreover, the convergence property of HDE is analyzed by using the theory of finite Markov chain. Finally, simulations and comparisons based on benchmarks demonstrate the effectiveness and efficiency of the proposed HDE. 相似文献
17.
The paper deals with the parallel variant of the scheduling algorithm dedicated to the hybrid flow shop problem. The problem derives from practice of automated manufacturing lines, e.g. for printed packages. The overall goal is to design a new algorithm which merges the performance of the best known sequential approach with the efficient exploitation of parallel calculation environments. In order to fulfill the above aim, there are two methods proposed in this paper: the original fast method of parallel calculation of the criterion function and the local neighborhood parallel search method embedded in the tabu search approach. The theoretical analysis, as well as the original implementation, with the use of vector processing instructions SSE2 supported by suitable data organization, are presented below. Numerical properties of the proposed algorithm are empirically verified on the multi-core processor. 相似文献
18.
This study investigates the static and dynamic versions of the flexible open shop scheduling problem with the goal of minimizing makespan. The asymptotic optimality of the general dense scheduling (GDS) algorithm is proven by the boundedness hypothesis. For large-scale problems, the GDS-based heuristic algorithms are presented to accelerate convergence. For moderate-scale problems, the differential evolution algorithm is employed to obtain high-quality solutions. A series of random experiments are conducted to demonstrate the effectiveness of the proposed algorithms. 相似文献
19.
20.
This paper proposes a hybrid variable neighborhood search (HVNS) algorithm that combines the chemical-reaction optimization (CRO) and the estimation of distribution (EDA), for solving the hybrid flow shop (HFS) scheduling problems. The objective is to minimize the maximum completion time. In the proposed algorithm, a well-designed decoding mechanism is presented to schedule jobs with more flexibility. Meanwhile, considering the problem structure, eight neighborhood structures are developed. A kinetic energy sensitive neighborhood change approach is proposed to extract global information and avoid being stuck at the local optima. In addition, contrary to the fixed neighborhood set in traditional VNS, a dynamic neighborhood set update mechanism is utilized to exploit the potential search space. Finally, for the population of local optima solutions, an effective EDA-based global search approach is investigated to direct the search process to promising regions. The proposed algorithm is tested on sets of well-known benchmark instances. Through the analysis of experimental results, the high performance of the proposed HVNS algorithm is shown in comparison with four efficient algorithms from the literature. 相似文献