首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scheduling jobs on parallel machines with setup times and ready times   总被引:2,自引:0,他引:2  
In this research we are interested in scheduling jobs with ready times on identical parallel machines with sequence dependent setups. Our objective is to minimize the total weighted tardiness. As this problem is NP-Hard, we develop a heuristic to solve this problem in reasonable time. Our approach is an extension of the apparent tardiness cost with setups (ATCS) approach by [Lee, Y. H., Pinedo, M. (1997). Scheduling jobs on parallel machines with sequence dependent setup times. European Journal of Operational Research, 100, 464–474.] to allow non-ready jobs to be scheduled – meaning we allow a machine to remain idle for a high priority job arriving at a later time. To determine the scaling parameters for our composite dispatching rule (called ATCSR), we first develop a ‘grid approach’ that considers multiple values for the scaling parameters, generates multiple schedules, and chooses the best schedule for the solution. This experimentation was then used to develop regression equations to predict the values of the scaling parameters that would yield the highest quality solution. The grid and regression versions of ATCSR provide better performance than grid and empirically based formula versions of ATCS, BATCS, and X-RM which are the prominent algorithms in the literature.  相似文献   

2.
This paper explores a specific combinatorial problem relating to reentrant jobs on parallel primary machines, with a remote server machine. A middle operation is required by each job on the server before it returns to its primary processing machine. The problem, which is new to the literature, is inspired by the logistics of a semi-automated microbiology laboratory. We establish the NP-hard nature of the problem, and demonstrate various structural properties. A heuristic is developed and tested on randomly generated benchmark data. No alternative heuristics are available in the literature for comparison, but results indicate solutions reliably within 1.5% of optimum. Moreover, tests of our heuristic on real-life data from the microbiology laboratory provide a 20% improvement in throughput relative to current practice.  相似文献   

3.
In this paper, we discuss a scheduling problem for parallel batch machines where the jobs have ready times. Problems of this type can be found in semiconductor wafer fabrication facilities (wafer fabs). In addition, we consider precedence constraints among the jobs. Such constraints arise, for example, in scheduling subproblems of the shifting bottleneck heuristic when complex job shop scheduling problems are tackled. We use the total weighted tardiness as the performance measure to be optimized. Hence, the problem is NP-hard and we have to rely on heuristic solution approaches. We consider a variable neighborhood search (VNS) scheme and a greedy randomized adaptive search procedure (GRASP) to compute efficient solutions. We assess the performance of the two metaheuristics based on a large set of randomly generated problem instances and based on instances from the literature. The obtained computational results demonstrate that VNS is a very fast heuristic that quickly leads to high-quality solutions, whereas the GRASP is slightly outperformed by the VNS approach. However, the GRASP approach has the advantage that it can be parallelized in a more natural manner compared to VNS.  相似文献   

4.
This article addresses the problem of scheduling n non-preemptive jobs on m identical parallel machines with ω operators to minimize the makespan. The number of operators is less than the number of machines. As a result, it may happen that an operator has to supervise simultaneously several machines. This in turn has an impact on the job processing times as they become a function of the operators modus operandi. In this paper we consider the case where each modus operandi can only be changed at the end of a given period, i.e., a period based changing mode. We present heuristic algorithms to solve this problem. An experimental study is conducted to evaluate the performance of these heuristics in the average case, and a worst case analysis is presented for one of them.  相似文献   

5.
We consider the strongly NP-hard problem of scheduling two-operation non-preemptable jobs on two identical parallel machines. A single server, that can handle at most one job at a time, is available to carry out the first (or setup) operation. The second operation, to be carried out on the same machine but without the server, must be executed immediately after the setup. The objective is to minimize the makespan. We apply a column generation method to a population of partial schedules, in turn generated by some well known heuristics, to achieve effective and efficient solutions. We compare the performance of this method with those proposed earlier and also suggest future work.  相似文献   

6.
We introduce and analyze several models of schedulingn different types (groups) of jobs onm parallel machines, where in each group all jobs are identical. Our main goal is to exhibit the usefulness of quadratic programming approaches to solve these classes of high multiplicity scheduling problems, with the total weighted completion time as the minimization criterion. We develop polynomial algorithms for some models, and strongly polynomial algorithms for certain special cases. In particular, the model in which the weights are job independent, as well as the generally weighted model in which processing requirements are job independent, can be formulated as an integer convex separable quadratic cost flow problem, and therefore solved in polynomial time. When we specialize further, strongly polynomial bounds are achievable. Specifically, for the weighted model with job-independent processing requirements if we restrict the weights to be machine independent (while still assuming different machine speeds), anO(mn+n logn) algorithm is developed. If it is also assumed that all the machines have the same speed, the complexity of the algorithm can be improved toO(m logm+n logn). These results can be extended to related unweighted models with variable processing requirements in which all the machines are available at time zero. The research of Frieda Granot was partially supported by Natural Sciences and Engineering Research Council of Canada Grant 5-83998. The research of Jadranka Skorin-Kapov was partially supported by National Science Foundation Grant DDM-8909206.  相似文献   

7.
We consider in this paper the single-machine preemptive scheduling problem with job release dates, delivery times and preemption penalties, where each time a job is started, whether initially or after preemption, a job-dependent setup must take place. First, we prove that the problem is strongly NP-hard. Then, we present a dynamic programming algorithm and a polynomial time approximation scheme.  相似文献   

8.
Scheduling unrelated parallel batch processing machines to minimize makespan is studied in this paper. Jobs with non-identical sizes are scheduled on batch processing machines that can process several jobs as a batch as long as the machine capacity is not violated. Several heuristics based on best fit longest processing time (BFLPT) in two groups are proposed to solve the problem. A lower bound is also proved to evaluate the quality of the heuristics. Computational experiments were undertaken. These showed that J_SC-BFLPT, considering both load balance of machines and job processing times, was robust and outperformed other heuristics for most of the problem categories.  相似文献   

9.
This paper considers the problem of scheduling two-operation non-preemptable jobs on two identical semi-automatic machines. A single server is available to carry out the first (or setup) operation. The second operation is executed automatically, without the server. The general problem of makespan minimization is NP-hard in the strong sense. In earlier work, we showed that the equal total length problem is polynomial time and we also provided efficient and effective solutions for the special cases of equal setup and equal processing times. Most of the cases analyzed thus far have fallen into the category of regular problems. In this paper we build on this earlier work to deal with the general case. Various approaches will be considered. One may reduce the problem to a regular one by amalgamating jobs, or we may apply the earlier heuristics to (possibly regular) job clusters. Alternately we may apply a greedy heuristic, a metaheuristic such as a genetic algorithm or the well known Gilmore–Gomory algorithm to solve the general problem. We report on the performance of these various methods.  相似文献   

10.
The problem of scheduling N jobs on M uniform parallel machines is studied. The objective is to minimize the mean tardiness or the weighted sum of tardiness with weights based on jobs, on periods or both. For the mean tardiness criteria in the preemptive case, this problem is NP-hard but good solutions can be calculated with a transportation problem algorithm. In the nonpreemptive case the problem is therefore NP-hard, except for the cases with equal job processing times or with job due dates equal to job processing times. No dominant heuristic is known in the general nonpreemptive case. The author has developed a heuristic to solve the nonpreemptive scheduling problem with unrelated job processing times. Initially, the algorithm calculates a basic solution. Next, it considers the interchanges of job subsets to equal processing time sum interchanging resources (i.e. a machine for a given period). This paper models the scheduling problem. It presents the heuristic and its result quality, solving 576 problems for 18 problem sizes. An application of school timetable scheduling illustrates the use of this heuristic.  相似文献   

11.
This paper considers the identical parallel machines scheduling problem (PMSP) with a single server in charge of job setups. A job can be processed with a precedent setup by a server on one of the machines. The setup can be processed at only one machine at any time. In this paper, the problem P, S1|sj|Cmax with a general job set is formulated using mixed integer programming in two ways. The first one is developed by taking into account the characteristics of the single server problem, and the second one is developed by adding the concept of the server waiting time suggested by Abdekhodaee and Wirth (2002) [3]. Abdekhodaee and Wirth (2002) [3] define the equation of the server waiting time applied to only the special case with two machines and a regular job set. The general model for several machines is studied in this paper by developing the properties on the server waiting time. The hybrid heuristic algorithm is developed for the practical use, which can yield a near-optimal schedule in a reasonable computational time. The performance of algorithm is evaluated by comparing with the results of MIP models and heuristics appearing in the literature.  相似文献   

12.
We generalize and improve previous results of online preemptive deadline scheduling with preemption penalties. We consider both the preemption-restart and the preemption-resume models, and give new or improved lower bounds on the competitive ratio of deterministic online algorithms. In many cases the bounds are optimal when the job deadlines are tight. Our results show that the competitiveness varies linearly with the penalty factor.  相似文献   

13.
In this paper, a cellular automaton (CA) is proposed as a tool for designing distributed scheduling algorithms for allocating parallel program tasks in multiprocessor systems. For this purpose, a program graph is considered as a CA containing elementary automata interacting locally according to some rules. In the first phase of the algorithm, effective rules for the CA are discovered by a genetic algorithm. In the second phase, the CA works as a distributed scheduler. In this phase, for any initial allocation of tasks in a multiprocessor system, the CA-based scheduler finds an allocation minimizing the total execution time of the program in a given system topology. The effectiveness of the proposed scheduling algorithm is shown for a number of program graphs scheduled in a two-processor system.  相似文献   

14.
15.
A branch and bound algorithm (B&B) has been widely used in various discrete and combinatorial optimization fields. To obtain optimal solutions as soon as possible for scheduling problems, three tools, which are branching, bounding and dominance rules, have been developed in the B&B algorithm. One of these tools, a branching is a method for generating subproblems and directly determines size of solution to be searched in the B&B algorithm. Therefore, it is very important to devise effective branching scheme for the problem.In this note, a survey of branching schemes is performed for parallel machines scheduling (PMS) problems with n independent jobs and m machines and new branching schemes that can be used for identical and unrelated PMS problems, respectively, are suggested. The suggested branching methods show that numbers of generated subproblems are much smaller than that of other methods developed earlier and therefore, it is expected that they help to reduce a lot of CPU time required to obtain optimal solutions in the B&B algorithm.  相似文献   

16.
This research analyzes the problem of scheduling a set of n jobs with arbitrary job sizes and non-zero ready times on a set of m unrelated parallel batch processing machines so as to minimize the makespan. Unrelated parallel machine is a generalization of the identical parallel processing machines and is closer to real-world production systems. Each machine can accommodate and process several jobs simultaneously as a batch as long as the machine capacity is not exceeded. The batch processing time and the batch ready time are respectively equal to the largest processing time and the largest ready time among all the jobs in the batch. Motivated by the computational complexity and the practical relevance of the problem, we present several heuristics based on first-fit and best-fit earliest job ready time rules. We also present a mixed integer programming model for the problem and a lower bound to evaluate the quality of the heuristics. The small computational effort of deterministic heuristics, which is valuable in some practical applications, is also one of the reasons that motivates this study. The results show that the heuristic proposed in this paper has a superior performance compared to the heuristics based on ideas proposed in the literature.  相似文献   

17.
This paper investigates the scheduling problem of parallel identical batch processing machines in which each machine can process a group of jobs simultaneously as a batch. Each job is characterized by its size and processing time. The processing time of a batch is given by the longest processing time among all jobs in the batch. Based on developing heuristic approaches, we proposed a hybrid genetic heuristic (HGH) to minimize makespan objective. To verify the performance of our algorithm, comparisons are made through using a simulated annealing (SA) approach addressed in the literature as a comparator algorithm. Computational experiments reveal that affording the knowledge of problem through using heuristic procedures, gives HGH the ability of finding optimal or near optimal solutions in a reasonable time.  相似文献   

18.
This paper proposes a dispatching rule that guarantees a predetermined minimum quality level for non-identical parallel machines with multiple product types. Manufacturers are focusing on improving the overall quality of their products, as the demand for top quality products is increasing. Such changes increase the possibility of neglecting another crucial factor in manufacturing schedules, namely due date. Traditionally, jobs are dispatched with the focus on meeting due dates. That is, jobs are assigned to machines without consideration of product quality. This approach opens the possibility of manufacturing poor quality products. Realizing the shortcomings of the existing dispatching rules, manufacturers are tempted to dispatch jobs with the objective of maximizing product quality. With such an attempt, jobs are likely to be assigned to high performance machines only. In turn, waiting times will increase and job delays are inevitable. This research proposes a dispatching rule that satisfies both criteria, reducing due date delays, while ensuring a predefined product quality level. A quality index is introduced to standardize various product qualities. The index is used to ensure a predetermined quality level, whilst minimizing product delays. Simulations compare various dispatch methods, evaluating them based on mean tardiness and product quality.  相似文献   

19.
When the processing times of jobs are controllable, selected processing times affect both the manufacturing cost and the scheduling performance. A well-known example for such a case that this paper specifically deals with is the turning operation on a CNC machine. Manufacturing cost of a turning operation is a nonlinear convex function of its processing time. We also know that scheduling decisions are quite sensitive to the processing times. Therefore, this paper considers minimizing total manufacturing cost (F1)(F1) and total completion time (F2)(F2) objectives simultaneously on identical parallel CNC turning machines. Since decreasing processing time of a job increases its manufacturing cost, we cannot minimize both objectives at the same time, so the problem is to generate non-dominated solutions. We consider the problem of minimizing F1F1 subject to a given F2F2 level and give an effective formulation for the problem. For this problem, we prove some optimality properties which facilitated designing an efficient heuristic algorithm to generate approximate non-dominated solutions. Computational results show that proposed algorithm performs almost equal with the GAMS/MINOS commercial solver although it spends much less computation time.  相似文献   

20.
In this paper we study two generalizations of the well known unrelated parallel machines scheduling problem under makespan (Cmax) minimization. First, a situation in which not every available parallel machine should be used and it is desirable to employ only a subset of the parallel machines. This is referred to as “Not All Machines” or NAM in short. This environment applies frequently in production shops where capacity exceeds demand or when production capacity can be lent to third companies. Also, NAM can be used to increase production capacity and it is not clear how many additional machines should be acquired. The second studied generalization has been referred to as “Not All Jobs” or NAJ. Here, there is no obligation to process all available jobs. We propose Mixed Integer Programming mathematical formulations for both NAM and NAJ, and it is shown that the latter can be effectively solved with modern commercial solvers. We also present three algorithms to solve the NAM problem. These algorithms are compared with the proposed MIP formulation when solved with IBM ILOG CPLEX 12.1. Comprehensive computational and statistical experiments prove that our proposed algorithms significantly improve the results given by the solver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号