首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we consider the problem of on-line graph coloring. In an instance of on-line graph coloring, the nodes are presented one at a time. As each node is presented, its edges to previously presented nodes are also given. Each node must be assigned a color, different from the colors of its neighbors, before the next node is given. LetA(G) be the number of colors used by algorithmA on a graphG and letx(G) be the chromatic number ofG. The performance ratio of an on-line graph coloring algorithm for a class of graphsC is maxG C(A(G)/(G)). We consider the class ofd-inductive graphs. A graphG isd-inductive if the nodes ofG can be numbered so that each node has at mostd edges to higher-numbered nodes. In particular, planar graphs are 5-inductive, and chordal graphs arex(G)-inductive. First Fit is the algorithm that assigns each node the lowest-numbered color possible. We show that ifG isd-inductive, then First Fit usesO(d logn) colors onG. This yields an upper bound ofo(logn) on the performance ratio of First Fit on chordal and planar graphs. First Fit does as well as any on-line algorithm ford-inductive graphs: we show that, for anyd and any on-line graph coloring algorithmA, there is ad-inductive graph that forcesA to use (d logn) colors to colorG. We also examine on-line graph coloring with lookahead. An algorithm is on-line with lookaheadl, if it must color nodei after examining only the firstl+i nodes. We show that, forl/logn, the lower bound ofd logn colors still holds.This research was supported by an IBM Graduate Fellowship.  相似文献   

2.
Most of the recent heuristics for the graph coloring problem start from an infeasible k-coloring (adjacent vertices may have the same color) and try to make the solution feasible through a sequence of color exchanges. In contrast, our approach (called FOO-PARTIALCOL), which is based on tabu search, considers feasible but partial solutions and tries to increase the size of the current partial solution. A solution consists of k disjoint stable sets (and, therefore, is a feasible, partial k-coloring) and a set of uncolored vertices. We introduce a reactive tabu tenure which substantially enhances the performance of both our heuristic as well as the classical tabu algorithm (called TABUCOL) proposed by Hertz and de Werra [Using tabu search techniques for graph coloring, Computing 1987;39:345–51]. We will report numerical results on different benchmark graphs and we will observe that FOO-PARTIALCOL, though very simple, outperforms TABUCOL on some instances, provides very competitive results on a set of benchmark graphs which are known to be difficult, and outperforms the best-known methods on the graph flat300_28_0. For this graph, FOO-PARTIALCOL finds an optimal coloring with 28 colors. The best coloring achieved to date uses 31 colors. Algorithms very close to TABUCOL are still used as intensification procedures in the best coloring methods, which are evolutionary heuristics. FOO-PARTIALCOL could then be a powerful alternative. In conclusion FOO-PARTIALCOL is one of the most efficient simple local search coloring methods yet available.  相似文献   

3.
An effective heuristic algorithm for sum coloring of graphs   总被引:1,自引:0,他引:1  
Given an undirected graph G=(V,E), the minimum sum coloring problem (MSCP) is to find a legal vertex coloring of G, using colors represented by natural numbers (1,2,…) such that the total sum of the colors assigned to the vertices is minimized. In this paper, we present EXSCOL, a heuristic algorithm based on independent set extraction for this NP-hard problem. EXSCOL identifies iteratively collections of disjoint independent sets of equal size and assign to each independent set the smallest available color. For the purpose of computing large independent sets, EXSCOL employs a tabu search based heuristic. Experimental evaluations on a collection of 52 DIMACS and COLOR2 benchmark graphs show that the proposed approach achieves highly competitive results. For more than half of the graphs used in the literature, our approach improves the current best known upper bounds.  相似文献   

4.
Let (G) denote the independence number of a graphG, that is the maximum number of pairwise independent vertices inG. We present a parallel algorithm that computes in a planar graphG = (V, E), an independent set such that ¦I¦ (G)/2. The algorithm runs in timeOlog2 n) and requires a linear number of processors. This is achieved by denning a new set of reductions that can be executed locally and simultaneously; furthermore, it is shown that a constant fraction of the vertices in the graph are reducible. This is the best known approximation scheme when the number of processors available is linear; parallel implementation of known sequential algorithms requires many more processors.Joseph Naor was supported by Contract ONR N00014-88-K-0166. Most of this work was done while he was a post-doctoral fellow at the Department of Computer Science, University of Southern California, Los Angeles, CA 90089-0782, USA.  相似文献   

5.
Graphs are universal modeling tools. They are used to represent objects and their relationships in almost all domains: they are used to represent DNA, images, videos, social networks, XML documents, etc. When objects are represented by graphs, the problem of their comparison is a problem of comparing graphs. Comparing objects is a key task in our daily life. It is the core of a search engine, the backbone of a mining tool, etc. Nowadays, comparing objects faces the challenge of the large amount of data that this task must deal with. Moreover, when graphs are used to model these objects, it is known that graph comparison is very complex and computationally hard especially for large graphs. So, research on simplifying graph comparison gainedan interest and several solutions are proposed. In this paper, we explore and evaluate a new solution for the comparison of large graphs. Our approach relies on a compact encoding of graphs called prime graphs. Prime graphs are smaller and simpler than the original ones but they retain the structure and properties of the encoded graphs. We propose to approximate the similarity between two graphs by comparing the corresponding prime graphs. Simulations results show that this approach is effective for large graphs.  相似文献   

6.
Dotted interval graphs are introduced by Aumann et al. as a generalization of interval graphs. We study two optimization problems in dotted interval graphs that find application in high-throughput genotyping. We present improved approximations for minimum coloring and the first approximation for maximum independent set in dotted interval graphs.  相似文献   

7.
We consider a monthly crew scheduling problem with preferential bidding in the airline industry. We propose a new methodology based on a graph coloring model and a tabu search algorithm for determining if the problem contains at least one feasible solution. We then show how to combine the proposed approach with a heuristic sequential scheduling method that uses column generation and branch-and-bound techniques.  相似文献   

8.
An old problem in graph theory is to characterize the graphs that admit two disjoint maximal independent sets.  相似文献   

9.
Finding a dominating set of minimum cardinality is an NP-hard graph problem, even when the graph is bipartite. In this paper we are interested in solving the problem on graphs having a large independent set. Given a graph G with an independent set of size z, we show that the problem can be solved in time O(2nz), where n is the number of vertices of G. As a consequence, our algorithm is able to solve the dominating set problem on bipartite graphs in time O(2n/2). Another implication is an algorithm for general graphs whose running time is O(n1.7088).  相似文献   

10.
This paper describes an automated tabu search based method for drawing general graph layouts with straight lines. To our knowledge, this is the first time tabu methods have been applied to graph drawing. We formulated the task as a multi-criteria optimization problem with a number of metrics which are used in a weighted fitness function to measure the aesthetic quality of the graph layout. The main goal of this work is to speed up the graph layout process without sacrificing layout quality. To achieve this, we use a tabu search based method that goes through a predefined number of iterations to minimize the value of the fitness function. Tabu search always chooses the best solution in the neighbourhood. This may lead to cycling, so a tabu list is used to store moves that are not permitted, meaning that the algorithm does not choose previous solutions for a set period of time. We evaluate the method according to the time spent to draw a graph and the quality of the drawn graphs. We give experimental results applied on random graphs and we provide statistical evidence that our method outperforms a fast search-based drawing method (hill climbing) in execution time while it produces comparably good graph layouts. We also demonstrate the method on real world graph datasets to show that we can reproduce similar results in a real world setting.  相似文献   

11.
Many NP-hard graph problems remain difficult on Pk-free graphs for certain values of k. Our goal is to distinguish subclasses of Pk-free graphs where several important graph problems can be solved in polynomial time. In particular, we show that the independent set problem is polynomial-time solvable in the class of (Pk,K1,n)-free graphs for any positive integers k and n, thereby generalizing several known results.  相似文献   

12.
Theminimum-degree greedy algorithm, or Greedy for short, is a simple and well-studied method for finding independent sets in graphs. We show that it achieves a performance ratio of (Δ+2)/3 for approximating independent sets in graphs with degree bounded by Δ. The analysis yields a precise characterization of the size of the independent sets found by the algorithm as a function of the independence number, as well as a generalization of Turán’s bound. We also analyze the algorithm when run in combination with a known preprocessing technique, and obtain an improved performance ratio on graphs with average degree , improving on the previous best of Hochbaum. Finally, we present an efficient parallel and distributed algorithm attaining the performance guarantees of Greedy. Gordon Gekko [29]. A preliminary version of this paper appeared at the 26th ACM Symposium on Theory of Computing, 1994. This work was done while both authors were at the Japan Advanced Institute of Science and Technology, Hokuriku.  相似文献   

13.
14.
《Theoretical computer science》2004,310(1-3):287-307
We design efficient competitive algorithms for discovering hidden information using few queries. Specifically, consider a game in a given set of intervals (and their implied interval graph G) in which our goal is to discover an (unknown) independent set X by making the fewest queries of the form “Is point p covered by an interval in X?” Our interest in this problem stems from two applications: experimental gene discovery with PCR technology and the game of Battleship (in a 1-dimensional setting). We provide adaptive algorithms for both the verification scenario (given an independent set, is it X?) and the discovery scenario (find X without any information). Under some assumptions, these algorithms use an asymptotically optimal number of queries in every instance.  相似文献   

15.
《国际计算机数学杂志》2012,89(12):1477-1487
Based on a Directed Acyclic Graph approach, an O(kn 2) time sequential algorithm is presented to solve the maximum weight k-independent set problem on weighted-permutation graphs. The weights considered here are all non-negative and associated with each of the n vertices of the graph. This problem has many applications in practical problems like k-machines job scheduling problem, k-colourable subgraph problem, VLSI design and routing problem.  相似文献   

16.
We first propose a formal definition for the concept of probabilistic combinatorial optimization problem (under the a priori method). Next, we study the complexity of optimally solving probabilistic maximum independent set problem under several a priori optimization strategies as well as the complexity of approximating optimal solutions. For the different strategies studied, we present results about the restriction of probabilistic independent set on bipartite graphs.  相似文献   

17.
We show that the 3-colorability problem can be solved in O(n1.296) time on any n-vertex graph with minimum degree at least 15. This algorithm is obtained by constructing a dominating set of the graph greedily, enumerating all possible 3-colorings of the dominating set, and then solving the resulting 2-list coloring instances in polynomial time. We also show that a 3-coloring can be obtained in 2o(n) time for graphs having minimum degree at least ω(n) where ω(n) is any function which goes to ∞. We also show that if the lower bound on minimum degree is replaced by a constant (however large it may be), then neither a 2o(n) time nor a 2o(m) time algorithm is possible (m denotes the number of edges) for 3-colorability unless Exponential Time Hypothesis (ETH) fails. We also describe an algorithm which obtains a 4-coloring of a 3-colorable graph in O(n1.2535) time.  相似文献   

18.
Tabu search for attribute reduction in rough set theory   总被引:2,自引:0,他引:2  
In this paper, we consider a memory-based heuristic of tabu search to solve the attribute reduction problem in rough set theory. The proposed method, called tabu search attribute reduction (TSAR), is a high-level TS with long-term memory. Therefore, TSAR invokes diversification and intensification search schemes besides the TS neighborhood search methodology. TSAR shows promising and competitive performance compared with some other CI tools in terms of solution qualities. Moreover, TSAR shows a superior performance in saving the computational costs.  相似文献   

19.
We present an anonymous, constant-space, self-stabilizing algorithm for finding a 1-maximal independent set in tree graphs (and some rings). We show that the algorithm converges in O(n2) moves under any central daemon (one that at each time-step selects one of the privileged nodes to move).  相似文献   

20.
A clique of a graph G is defined as a complete subgraph maximal under inclusion and having at least two vertices. A clique-transversal set D of G is a subset of vertices of G such that D meets all cliques of G. The clique-transversal set problem is to find a minimum clique-transversal set of G. In this paper we present a polynomial time algorithm for the clique-transversal set problem on claw-free graphs with degree at most 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号