首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The identical parallel machine scheduling problem with the objective of minimizing total weighted completion time is considered in the online setting where jobs arrive over time. An online algorithm is proposed and is proven to be (2.5–1/2m)-competitive based on the idea of instances reduction. Further computational experiments show the superiority over other algorithms in the average performance.  相似文献   

2.
We investigate the problem of scheduling n jobs in s-stage hybrid flowshops with parallel identical machines at each stage. The objective is to find a schedule that minimizes the sum of weighted completion times of the jobs. This problem has been proven to be NP-hard. In this paper, an integer programming formulation is constructed for the problem. A new Lagrangian relaxation algorithm is presented in which precedence constraints are relaxed to the objective function by introducing Lagrangian multipliers, unlike the commonly used method of relaxing capacity constraints. In this way the relaxed problem can be decomposed into machine type subproblems, each of which corresponds to a specific stage. A dynamic programming algorithm is designed for solving parallel identical machine subproblems where jobs may have negative weights. The multipliers are then iteratively updated along a subgradient direction. The new algorithm is computationally compared with the commonly used Lagrangian relaxation algorithms which, after capacity constraints are relaxed, decompose the relaxed problem into job level subproblems and solve the subproblems by using the regular and speed-up dynamic programming algorithms, respectively. Numerical results show that the new Lagrangian relaxation method produces better schedules in much shorter computation time, especially for large-scale problems.  相似文献   

3.
In this paper, three scheduling problems with deteriorating jobs to minimize the total completion time on a single machine are investigated. By a deteriorating job, we mean that the processing time of the job is a function of its execution start time. The three problems correspond to three different decreasing linear functions, whose increasing counterparts have been studied in the literature. Some basic properties of the three problems are proved. Based on these properties, two of the problems are solved in O(nlogn) time, where n is the number of jobs. A pseudopolynomial time algorithm is constructed to solve the third problem using dynamic programming. Finally, a comparison between the problems with job processing times being decreasing and increasing linear functions of their start times is presented, which shows that the decreasing and increasing linear models of job processing times seem to be closely related to each other.  相似文献   

4.
We consider a multi-agent scheduling problem on a single machine in which each agent is responsible for his own set of jobs and wishes to minimize the total weighted completion time of his own set of jobs. It is known that the unweighted problem with two agents is NP-hard in the ordinary sense. For this case, we can reduce our problem to a Multi-Objective Shortest-Path (MOSP) problem and this reduction leads to several results including Fully Polynomial Time Approximation Schemes (FPTAS). We also provide an efficient approximation algorithm with a reasonably good worst-case ratio.  相似文献   

5.
This paper considers a deterministic scheduling problem where multiple jobs with s-precedence relations are processed on multiple identical parallel machines. The objective is to minimize the total completion time. The s-precedence relation between two jobs i and j represents the situation where job j is constrained from processing until job i starts processing, which is different from the standard definition of a precedence relation where j cannot start until i completes. The s-precedence relation has wide applicability in the real world such as first-come-first-served processing systems.  相似文献   

6.
7.
In many management situations multiple agents pursuing different objectives compete on the usage of common processing resources. In this paper we study a two-agent single-machine scheduling problem with release times where the objective is to minimize the total weighted completion time of the jobs of one agent with the constraint that the maximum lateness of the jobs of the other agent does not exceed a given limit. We propose a branch-and-bound algorithm to solve the problem, and a primary and a secondary simulated annealing algorithm to find near-optimal solutions. We conduct computational experiments to test the effectiveness of the algorithms. The computational results show that the branch-and-bound algorithm can solve most of the problem instances with up to 24 jobs in a reasonable amount of time and the primary simulated annealing algorithm performs well with an average percentage error of less than 0.5% for all the tested cases.  相似文献   

8.
9.
10.
In this paper we consider the parallel machine scheduling problem with dual resource constraints with the objective of minimizing the maximum completion time. We develop heuristics that combine list-scheduling and bin-packing approaches with rules to iteratively modify the flexible resource allocation. A lower bound is presented and the previous and proposed solution approaches to the problem are analyzed under a variety of experimental conditions, demonstrating that there are advantages to the proposed heuristics.  相似文献   

11.
We address the two-stage assembly scheduling problem where there are m machines at the first stage and an assembly machine at the second stage. The objective is to schedule the available n jobs so that total completion time of all n jobs is minimized. Setup times are treated as separate from processing times. This problem is NP-hard, and therefore we present a dominance relation and propose three heuristics. The heuristics are evaluated based on randomly generated data. One of the proposed heuristics is known to be the best heuristic for the case of zero setup times while another heuristic is known to perform well for such problems. A new version of the latter heuristic, which utilizes the dominance relation, is proposed and shown to perform much better than the other two heuristics.  相似文献   

12.
In this article, we consider a single machine scheduling problem with a time-dependent learning effect and deteriorating jobs. By the effects of time-dependent learning and deterioration, we mean that the job processing time is defined by a function of its starting time and total normal processing time of jobs in front of it in the sequence. The objective is to determine an optimal schedule so as to minimize the total completion time. This problem remains open for the case of ?1?a?a denotes the learning index; we show that an optimal schedule of the problem is V-shaped with respect to job normal processing times. Three heuristic algorithms utilising the V-shaped property are proposed, and computational experiments show that the last heuristic algorithm performs effectively and efficiently in obtaining near-optimal solutions.  相似文献   

13.
We address the two-stage multi-machine assembly scheduling problem. The first stage consists of m independently working machines where each machine produces its own component. The second stage consists of two independent and identical assembly machines. The objective is to come up with a schedule that minimizes total or mean completion time for all jobs. The problem has been addressed in the scheduling literature and several heuristics have been proposed. In this paper, we propose a new heuristic called artificial immune system (AIS). We conduct experimental analysis for comparing the newly proposed heuristic AIS with the best known heuristic in the literature. Experimental results show that our proposed heuristic AIS performs better than the best known existing heuristic. More specifically, our new heuristic AIS reduces the error of the best known heuristic by 60% while the computational times of both AIS and the best known heuristic are almost the same.  相似文献   

14.
This paper investigates an extended problem of job shop scheduling to minimize the total completion time. With aim of actualization of the scheduling problems, many researchers have recently considered realistic assumptions in their problems. Two of the most applied assumptions are to consider sequence-dependent setup times and machine availability constraints (MACs). In this paper, we deal with a specific case of MACs caused by preventive maintenance (PM) operations. Contrary to the previous papers considering fixed or/and conservative policies, we consider flexible PM operations, in which PM operations may be postponed or expedited as required. A simple technique is employed to schedule production jobs along with the flexible MACs caused by PM. To solve the given problem, we present a novel meta-heuristic method based on the artificial immune algorithm (AIA) incorporating some advanced features. For further enhancement, the proposed AIA is hybridized with a simple and fast simulated annealing (SA). To evaluate the proposed algorithms, we compare our proposed AIA with three well-known algorithms taken from the literature. Finally, we find that the proposed AIA outperforms other algorithms.  相似文献   

15.
Zhao et al. (2009) [24] study the m identical parallel-machine scheduling problem with rate-modifying activities to minimize the total completion time. They show that the problem can be solved in O(n2m+3) time. In this study we extend the scheduling environment to the unrelated parallel-machine setting and present a more efficient algorithm to solve the extended problem. For the cases where the rate-modifying rate is (i) larger than 0 and not larger than 1, and (ii) larger than 0, we show that the problem can be solved in O(nm+3) and O(n2m+2) time, respectively.  相似文献   

16.
This work studies the scheduling problem where a set of jobs are available for processing in a no-wait and separate setup two-machine flow shop system with a single server. The no-wait constraint requires that the operations of a job have to be processed continuously without waiting between two machines. The setup time is incurred and attended by a single sever which can perform one setup at a time. The performance measure considered is the total completion time. The problem is strongly NP-hard. Optimal solutions for several restricted cases and some properties for general case are proposed. Both the heuristic and the branch and bound algorithms are established to tackle the problem. Computational experiments indicate that the heuristic and the branch and bound algorithm are superior to the existing ones in term of solution quality and number of branching nodes, respectively.  相似文献   

17.
Deteriorating jobs scheduling problems can be found in many practical situations. Due to the essential complexity of the problem, most of the research focuses on the single-machine setting. In this paper, we address a total completion time scheduling problem in the mm-machine permutation flow shop. First of all, we propose a dominance rule and an efficient lower bound to speed up the searching for the optimal solution. Second, several deterioration patterns, which include an increasing, a decreasing, a constant, a V-shaped, and a ΛΛ-shaped one, are investigated in order to study the impact of the deterioration rates. Finally, the performance of some well-known heuristics under various deterioration patterns is evaluated.  相似文献   

18.
We consider the rescheduling problems arising when two agents, each with a set of nonpreemptive jobs, compete to perform their respective jobs on a common processing resource. Each agent wants to minimize a certain objective function, which depends on the completion time of its jobs only. In this paper, we consider the two agents rescheduling problems for jobs on a single machine to minimize total completion time under a limit on the makespan of the original jobs. We show that the considered problems can be solved in polynomial time or pseudopolynomial time.  相似文献   

19.
We consider the problem of scheduling n jobs in batches on a single parallel-batching machine, where the jobs are partitioned into jobs families and the jobs in each family have the same due date. The objective is to minimize the weighted number of tardy jobs. We first devise an efficient pseudo-polynomial time and a fully polynomial time approximation scheme for the weighted problem. Then we present O(n2)-time and O(nlogn)-time algorithms for the case where the jobs have the same weight and for the case where the jobs have the same processing time, respectively.  相似文献   

20.
We study a two-agent scheduling problem in a two-machine permutation flowshop with learning effects. The objective is to minimize the total completion time of the jobs from one agent, given that the maximum tardiness of the jobs from the other agent cannot exceed a bound. We provide a branch-and-bound algorithm for the problem. In addition, we present several genetic algorithms to obtain near-optimal solutions. Computational results indicate that the algorithms perform well in either solving the problem or efficiently generating near-optimal solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号