首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Global concern for increased energy demand, increased cost of natural gas and petroleum, energy security and environmental degradation are leading to heightened interest in using nuclear energy and hydrogen to leverage existing hydrocarbon reserves. The wasteful use of hydrocarbons can be minimised by using nuclear as a source of energy and water as a source of hydrogen. Virtually all hydrogen today is produced from fossil fuels, which give rise to CO2 emissions. Hydrogen can be cleanly produced from water (without CO2 pollution) by using nuclear energy to generate the required electricity and/or process heat to split the water molecule. Once the clean hydrogen has been produced, it can be used as feedstock to fuel cell technologies, or in the nearer term as feedstock to a coal-to-liquids process to produce cleaner synthetic liquid fuels. Clean liquid fuels from coal - using hydrogen generated from nuclear energy - is an intermediate step for using hydrogen to reduce pollution in the transport sector; simultaneously addressing energy security concerns. Several promising water-splitting technologies have been identified. Thermo-chemical water-splitting and high-temperature steam electrolysis technologies require process temperatures in the range of 850 °C and higher for the efficient production of hydrogen. The pebble bed modular reactor (PBMR), under development in South Africa, is ideally suited to generate both high-temperature process heat and electricity for the production of hydrogen. This paper will discuss South Africa's opportunity to maximise the use of its nuclear technology and national resources in a global hydrogen economy.  相似文献   

2.
The effect of thermal annealing and particle radiation on the depth profile of 25 keV H+ implanted into crystalline and ion-beam amorphised silicon has been studied via the 1H(15N, αγ)12C reaction. Out-diffusion of hydrogen from crystalline silicon was observed after annealing at 100 °C for 45 min. The corresponding temperature for ion-beam (300 keV, 84Kr2+) amorphised silicon was between 300 and 500 °C. Radiation damage produced by 3 × 1015 6.4 MeV 15N2+ ion cm−2 lead to effective trapping of the hydrogen in crystalline silicon whilst 1.1 × 1015 300 keV Kr2+ ions cm−2 gave rise to significant spreading.  相似文献   

3.
High-temperature electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800-950 °C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an intermediate heat exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the sweep gas loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies.The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed with the objective of evaluating the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency of the integrated plant design for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycles producing the highest efficiencies varied depending on the temperature range considered.  相似文献   

4.
The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using either thermochemical or high-temperature electrolysis (HTE) processes. Using heat from the MHR to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been the subject of a U.S. Department of Energy sponsored Nuclear Engineering Research Initiative (NERI) project led by General Atomics, with participation from the Idaho National Laboratory (INL) and Texas A&M University. While the focus of much of the initial work was on the SI thermochemical production of hydrogen, recent activities included development of a preconceptual design for an integral HTE hydrogen production plant driven by the process heat and electricity produced by a 600 MW MHR.This paper describes ATHENA analyses performed to evaluate alternative primary system cooling configurations for the MHR to minimize peak reactor vessel and core temperatures while achieving core helium outlet temperatures in the range of 900–1000 °C that are needed for the efficient production of hydrogen using either the SI or HTE process. The cooling schemes investigated are intended to ensure peak fuel temperatures do not exceed specified limits under normal or transient upset conditions, and that reactor vessel temperatures do not exceed American Society of Mechanical Engineers (ASME) code limits for steady-state or transient conditions using standard light water reactor vessel materials. Preconceptual designs for SI and HTE hydrogen production plants driven by one or more 600 MW MHRs at helium outlet temperatures in the range of 900–1000 °C are described and compared. An initial SAPHIRE model to evaluate the reliability, maintainability, and availability of the SI hydrogen production plant is also described. Finally, a preliminary flowsheet for a conceptual design of an HTE hydrogen production plant coupled to a 600 MW modular helium reactor is presented and discussed.  相似文献   

5.
A horizontal coaxial double-tube hot gas duct is a key component connecting the reactor pressure vessel and the steam generator pressure vessel for the 10 MW High Temperature Gas-cooled Reactor—Test Module. Hot helium gas from the core outlet flows into the steam generator through the liner tube, while helium gas after being cooled returns to the core through a passage formed between the inner tube and the duct pressure vessel. Thermal insulation material is packed into the space between the liner tube and the inner tube to resist heat transfer from the hot helium to the cold helium. The thermal compensation structure is designed in order to avoid large thermal stress because of different thermal expansions of the duct parts under various conditions. According to the design principal of the hot gas duct, the detailed structure design and strength evaluation for it has been done. A full-scale duct test section was then made according to the design parameters, and its thermal performance experiment was carried out in a helium test loop. With helium gas at pressure of about 3.0 MPa and a temperature over 900 °C, the continuous operation time for the duct test section lasted 98 h. At a helium gas temperature over 700 °C, the cumulative operation time for the duct test section reached 350 h. The duct test section also experienced 20 pressure cycles in the pressure range of 0.1–3.4 MPa, 18 temperature cycles in the temperature range of 100–950 °C. Thermal test results show an effective thermal conductivity of the hot gas duct thermal insulation is 0.47 W m−1 °C−1 under normal operation condition. In addition, a hot gas duct depressurization test was carried out; the test result showed that the pressure variation occurred on the liner tube was not more than 0.2 MPa for an assumed maximum gas release rate.  相似文献   

6.
The two-loop system with a high temperature reactor, which is operated by the Arbeitsgemeinschaft Versuchsreaktor (AVR) GmbH and which was built by the BBC/Krupp consortium (today HRB), has been in operation for more than seven years. In that time more than 635 × 106 kWhr have been produced and more than 6.5 × 105 spherical fuel elements have been circulated under operation. The fully integrated design, and above all the ceramic gas duct, permit very high gas temperatures although no high alloyed, heat resistant steels were used in the reactor. In February 1974 the average hot-gas temperature at the outlet of the core could thus be increased from its original design value of 850°C to 950°C. Peak temperatures of above 500°C are thereby confined to a small region between the middle of the core and the beginning of the steam generator. Carbon protects the steel structures against high temperatures. Unplanned interruptions and reductions of operation due to the increase of the hot-gas temperature have not occurred so far. Some thermocouples in the hot-gas region failed. All other components functioned satisfactorily and, one year after the increase in the hot-gas temperature, there are no misgivings as to their future functioning. These satis-factory but short operating experiences at 950°C will have to be supplemented in the next few years by experiences over a longer period.  相似文献   

7.
Deuterium and hydrogen ions with an energy of 15 keV have been implanted in virgin MgO (1 0 0) single crystals and in single crystals containing helium implantation generated microcavities. Doses were varied from 2 × 1015 to 2 × 1016 cm−2. The samples were annealed from room temperature to 950 K. The defects produced by hydrogen and the trapping of hydrogen at the defects were monitored by photon absorption and positron beam analysis. With this novel technique a depth distribution of defects can be determined for implantation depths from 0 to 2000 nm. The technique is very sensitive for vacancy and vacancy clusters, i.e. sites with low electron density. After 950 K annealing microcavities were observed for the 2 × 1016 cm−2 dose but not for the 10 times lower dose. During annealing up to 750 K point defects are mobile but the defect clusters remain small and filled with hydrogen. In samples which contain already microcavities, point defects and deuterium from the deuterium irradiation are accumulated by the microcavities.  相似文献   

8.
The manifold possibilities of the application of helium-heated steam reformers combined with high temperature nuclear reactors are elucidated in this article. It is shown that the thermodynamic interpretation of the processes does not cause difficulties because of the good heat transfer in helium at high pressure and that helium peak temperatures of 950°C are sufficient for carrying out the process. The mechanical design of the reformer tube does not lead to problems because the helium and process pressures are so chosen as to be approximately equal. The problems of hydrogen and tritium permeation as well as the contamination of the reformer tube with solid fission products seem to be solvable using the knowledge available at present. Furthermore, the various possibilities for the design arrangements of helium-heated reformer tube furnaces are shown. The status of development attained to date is outlined and in conclusion there is a survey regarding the next steps to be taken in steam reformer technology.  相似文献   

9.
The studies on the specimens manufactured from the templates cut out from the weld 4 of Kozloduy NPP Unit 1 reactor vessel have been conducted. The data on chemical composition of the weld metal have been obtained. Neutron fluence, mechanical properties, ductile to brittle transition temperature (DBTT) using mini Charpy samples have been determined. The phosphorus and copper content averaged over all templates is 0.046 and 0.1 wt.%, respectively. The fluence amounted up to 5×1018 n cm−2 within 15–18 fuel cycles, and about 5×1019 n cm−2 for the whole period of operation. These values agree well with calculated data. DBTT was determined after irradiation (Tk) to evaluate the vessel metal state at the present moment, then after heat treatment at the temperature of 475°C to simulate the vessel metal state after thermal annealing (Tan), and after heat treatment at 560°C to simulate the metal state in the initial state (Tk0). As a result of the tests the following values were obtained: Tk, +91.5°C; Tan, +63°C; and Tk0, 54°C. The values of Tk and Tan obtained by measurements were found to be considerably lower than those predicted in accordance with the conservative method accepted in Russia (177°C for Tk and 100°C for Tan). Thus, the obtained results allowed to make a conclusion that it is not necessary to anneal Kozloduy NPP Unit 1 reactor vessel for the second time. The fractographic and electron-microscopic research allowed to draw some conclusions on the embrittlement mechanism.  相似文献   

10.
In modern CANDU nuclear generating stations, pressure tubes of cold-worked Zr---2.5Nb material are used in the reactor core to contain the fuel bundles and the heavy water (D2O) coolant. The pressure tubes operate at an internal pressure of about 10 MPa and temperatures ranging from about 250°C at the inlet to about 310°C at the outlet. Over the expected 30 year lifetime of these tubes they will be subjected to a total fluence of approximately 3 × 1026 n m−2. In addition, these tubes gradually pick up deuterium as a result of a slow corrosion process. When the hydrogen plus deuterium concentration in the tubes exceeds the hydrogen-deuterium solvus, the tubes are susceptible to a crack initiation and propagation process called delayed hydride cracking (DHC). If undetected, such a cracking mechanism could lead to unstable rupture of the pressure tube. A fitness-for-service methodology has been developed which assures that this will not happen. A key element in this methodology is the acquisition of data and understanding—from surveillance and accelerated aging testing—to assess and predict changes in the DHC initiation threshold, the DHC velocity and the fracture toughness (critical crack length) as a function of service time. The most recent results of the DHC and fracture toughness properties of CANDU pressure tubes as a function of time in service are presented and used to suggest procedures for mitigation and life extension of the pressure tubes.  相似文献   

11.
A high temperature reactor with the cooling gas helium leaving at an average temperature of 950°C offers an interesting possibility for combining nuclear heat with the methane steam-reforming process. However, the incorporation of nuclear heat into this process still requires comprehensive experimental and theoretical studies before an economic and technical optimization of a combined nuclear/chemical plant can be reached. Thus the EVA (single reforming tube, Einzelrohr-Versuchsanlage) pilot plant was set up to examine the methane steam-reforming process in a helium-heated conventional reforming tube. This report describes the plant and specifies some representative experimental results. It follows that convective helium heating is an appropriate method of transferring heat to the reforming tube. In addition, the report describes two accompanying experiments in smaller high pressure test plants and summarizes some of the measured results.  相似文献   

12.
In modern CANDU nuclear generating stations, pressure tubes of cold-worked Zr-2.5Nb material are used in the reactor core to contain the fuel bundles and the heavy water (D2O) coolant. The pressure tubes operate at an internal pressure of 10 MPa and temperatures ranging from 250°C at the inlet to 310°C at the outlet. Over the expected 30 year lifetime of these tubes, they would be subjected to a total fluence of 3×1026 n m−2. In addition, these tubes gradually pick up deuterium as a result of a slow corrosion process. When the hydrogen plus deuterium concentration in the tubes exceeds the hydrogen/deuterium solvus, the tubes are susceptible to a crack initiation and propagation process called delayed hydride cracking (DHC). If undetected, such a cracking mechanism could lead to unstable rupture of the pressure tube. The service life of the pressure tubes is determined, in part, by changes in the probability for the rupture of a tube. This probability is made up of the probability for crack initiation by DHC multiplied by the sum of the probabilities of break-before-leak and leak-before-break (LBB). A probabilistic model, BLOOM, is described which makes it possible to estimate the cumulative probabilities of break-before-leak and LBB. The probability of break-before-leak depends on the crack length at first leak detection and the critical crack length. The probability of a LBB depends on the shut-down scenario used. The probabilistic approach is described in relation to an example of a possible shut-down scenario. Key physical input parameters into this analysis are pressure tube mechanical properties, such as the crack length at first coolant leakage, the DHC velocity and the critical crack length. Since none of these parameters are known precisely, either because they depend on material properties, which vary within and between pressure tubes, and/or because of measurement errors, they are given in terms of their means and standard deviations at the different temperatures and pressures defined by the shut-down scenario.  相似文献   

13.
Matter losses of polyethylene terephthalate (PET, Mylar) films induced by 1600 keV deuteron beams have been investigated in situ simultaneously by nuclear reaction analysis (NRA), deuteron forward elastic scattering (DFES) and hydrogen elastic recoil detection (HERD) in the fluence range from 1 × 1014 to 9 × 1016 cm−2. Volatile degradation products escape from the polymeric film, mostly as hydrogen-, oxygen- and carbon-containing molecules. Appropriate experimental conditions for observing the composition and thickness changes during irradiation are determined. 16O(d,p0)17O, 16O(d,p1)17O and 12C(d,p0)13C nuclear reactions were used to monitor the oxygen and carbon content as a function of deuteron fluence. Hydrogen release was determined simultaneously by H(d,d)H DFES and H(d,H)d HERD. Comparisons between NRA, DFES and HERD measurements show that the polymer carbonizes at high fluences because most of the oxygen and hydrogen depletion has already occured below a fluence of 3 × 1016 cm−2. Release curves for each element are determined. Experimental results are consistent with the bulk molecular recombination (BMR) model.  相似文献   

14.
This work is devoted to spherical fuel elements for the high temperature pebble bed reactor, their manufacture and the conditions which they must satisfy for use in a process-heat reactor with an average gas outlet temperature TG, out of 950°C. The positive results known from the operation of the AVR with TG,out = 950°C and from extensive irradiation tests of the THTR-300 element with BISO coated mixed-oxide particles, even beyond the range of design specifications, and possible damage mechanisms are described in detail. They show that a spherical fuel element already exists, for which only a short-term development is needed to produce a coolant temperature of 950°C in a process-heat reactor. Further developments will be characterized by the use of a pebble bed HTR for high conversion rates (c ≈ 0.95) or for average gas outlet temperatures of more than 950°C. At higher temperatures the increased demands, mainly with regard to the release of fission products, can be fulfilled through the application of TRISO-coated fuel particles and the doping of the fuel kernels with . The reprocessing programme for fuel elements in the Federal Republic of Germany is mentioned briefly.  相似文献   

15.
To simulate the nuclear fuel for High Temperature Engineering Testing Reactor (HTTR), fuel compact models using SiC-kernel coated particles instead of UO2-kernel coated particles were prepared under the same conditions as those for the real fuel compact. The mechanical and fracture mechanics properties were studied at room temperature. The thermal shock resistance and fracture toughness for thermal stresses of the fuel compact were experimentally assessed by means of arc discharge heating applied at a central area of the disk specimens. These model specimens were then neutron irradiated in the Japan Material Testing Reactor (JMTR) for fluences up to 1.7 × 1021n/cm2 (E ·> 29 fJ) at 900°C ± 50°C. The effects of irradiation on a series of fracture mechanical properties were evaluated and compared with the cases of graphite IG-110 used as the core materials in the HTTR.  相似文献   

16.
The author has studied mutual diffusion in the system zirconium— 15 at. % uranium. The diffusion coefficients in the body-centered high-temperature phase were determined at 950–1450° C with -radiation of uranium. It is shown that alloying zirconium with uranium reduces the diffusion mobility throughout the whole of the investigated temperature range and increases the activation energy. The temperature dependence of the diffusion coefficient of uranium in zirconium, obtained by extrapolating the diffusion parameters to zero uranium concentration, is represented by the equation D= 1.40·10–4 exp (–27,700/RT) cm2/sec.Translated from Atomnaya Énergiya, Vol.22, No.4, pp.290–292, April, 1967.  相似文献   

17.
The first gas-cooled fast breeder reactor (GCFR) fast flux irradiation experiment [F-1(X094)] consists of seven fuel rods clad in 20% cold-worked 316 stainless steel. The rods are individually encapsuled, with sodium filling the gaps within the capsule walls. The rods are fueled with (15% Pu, 85% U)O2 and have depleted UO2 lower and upper axial blankets and charcoal to trap volatile fission products. The cladding i.d. temperature range covered by these rods is 570–760°C (1055–1400°F).The in-reactor performance of the fuel rods in the F-1 high-temperature experiment, which achieved a burnup of 121 MWd/kg (13.0 at.%) on the lead rod, is described. All rods in the experiment have remained intact. The results of interim examinations [at 25 and 50 MWd/kg (2.7 and 5.4 at.%)] of fuel and fission product behavior and transport and comparisons of observed results with LIFE-III code predictions are described.The F-3 experiment, which consists of ten encapsulated GCFR fuel rods with surface-roughened (ribbed) cladding, shares a nineteen capsule subassembly with Argonne National Laboratory. Temperatures are controlled over the range 675°C (1250°F) to 750°C (1380°F). Irradiation is in the core region of the EBR-II and thus permits achievement of a higher fluence-to-burnup ratio than that obtained in the F-1 experiment.Preliminary results of a planned interim examination at an exposure of 46 MWd/kg (4.9 at.%) burnup and a fluence of 5.2 × 1022 n/cm2 show that cladding failures occurred in nine of the ten rods. Preliminary indications are that the failures are due to defects in the sodium bond between the fuel rod and the capsule.The tests completed and currently under way have been scoping in nature, and irradiation in EBR-II of GCFR prototypical fuel (pressure equalized) rods with ribbed cladding is required to provide the information needed for reactor design on effects of exposure to high fluence and burnup and on design reliability for a statistically significant number of rods. The design and the operating conditions for the F-5 experiment being prepared for this purpose are described.  相似文献   

18.
The irradiation damage caused on polyethylene terephtalate (Mylar, PET) samples by 1.6 MeV deuteron ions has been measured using simultaneously the nuclear reaction analysis (NRA) and the transmission energy loss (TEL) techniques. The irradiation was carried out at normal incidence relative to the target surface with the irradiation beam being used as the analysis beam. The evolution of the overall damage during irradiation was evaluated by measuring the variation of the energy loss of the deuteron beam passing through the target. For this purpose, a solid state Si detector placed at a forward angle of 30° relative to the incident beam direction was used. The NRA spectra recorded by a second Si detector located backward at 150° allowed the evaluation of the carbon and the oxygen depletion. The beam spot size was circular in shape and 1 mm in diameter and the beam current was set at 5 nA. The ion fluence was increased up to the value of 2.5 × 1016 deuterons/cm2. It was observed that the target energy loss decreased steadily as the fluence increased and levelled off at high fluence. The 16O(d,p0)17O, 16O(d,p1)17O* and 12C(d,p0)13C reactions were used for monitoring the evolution of the oxygen and carbon content as a function of the deuteron fluence. A monotonic decrease of the oxygen content with the increase of ion fluence was observed. At the highest fluence the oxygen depletion reached a value of about 75%. For carbon, a weak depletion was observed at fluence ranging from 2.5 × 1015 d/cm2 to 1.0 × 1016 d/cm2 followed by a levelling-off with a total loss around 20%.  相似文献   

19.
Carbon has been extensively used in nuclear reactors and there has been growing interest to develop carbon-based materials for high-temperature nuclear and fusion reactors. Carbon-carbon composite materials as against conventional graphite material are now being looked into as the promising materials for the high temperature reactor due their ability to have high thermal conductivity and high thermal resistance. Research on the development of such materials and their irradiation stability studies are scant. In the present investigations carbon-carbon composite has been developed using polyacrylonitrile (PAN) fiber. Two samples denoted as Sample-1 and Sample-2 have been prepared by impregnation using phenolic resin at pressure of 30 bar for time duration 10 h and 20 h respectively, and they have been irradiated by neutrons. The samples were irradiated in a flux of 1012 n/cm2/s at temperature of 40 °C. The fluence was 2.52 × 1016 n/cm2. These samples have been characterized by XRD and Raman spectroscopy before and after neutron irradiation. DSC studies have also been carried out to quantify the stored energy release behavior due to irradiation. The XRD analysis of the irradiated and unirradiated samples indicates that the irradiated samples show the tendency to get ordered structure, which was inferred from the Raman spectroscopy. The stored energy with respect to the fluence level was obtained from the DSC. The stored energy from these carbon composites is very less compared to irradiated graphite under ambient conditions.  相似文献   

20.
In Japan, the research and development on the High Temperature Gas-cooled Reactors (HTGRs) had been carried out for more than fifteen years since 1969 as the multi-purpose Very High Temperature gas-cooled Reactor (VHTR) program for direct utilization of nuclear process heat such as nuclear steel making. Recently, reflecting the change of the social and energy situation and with less incentives for industries to introduce such in the near future, the JAERI changed the program to a more basic ‘HTTR program’ to establish and upgrade the HTGR technology basis.The HTTR is a test reactor with a thermal output of 30 MW and reactor outlet coolant temperature of 950°C, employing a pin-in-block type fuel block, and has the capability to demonstrate nuclear process heat utilization using an intermediate heat exchanger. Since 1986 a detailed design has been made, in which major systems and components are determined in line with the HTTR concept, paying essential considerations into the design for achieving the reactor outlet coolant temperature of 950°C. The safety review of the Government started in February 1989. By request of the Science and Technology Agency the Reactor Safety Research Association reviewed the safety evaluation guideline, general design criteria, design code and design guide for the graphite and the high-temperature structure of the HTTR.The installation permit of the HTTR was issued by the Government in November 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号