首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
张宗飞 《计算机应用》2013,33(5):1357-1361
针对当前网络入侵检测中普遍存在检测速度较慢的缺陷,提出了一种新的网络入侵检测特征选择方法。该方法将量子进化算法应用于网络入侵检测的特征选择,从网络连接的原始特征属性中选出一组有效的特征用于入侵检测,以提高检测效率。首先以增强寻优性能为目标改进了量子进化算法,基于特征属性的Fisher比构造了特征子集的评价函数,然后按照量子进化算法的流程设计了网络入侵检测特征选择算法。通过KDD99样本数据集的实验,表明算法是有效的,既保证了入侵检测的分类性能,也提高了入侵检测的效率。  相似文献   

2.
实数编码量子进化算法   总被引:5,自引:0,他引:5  
为求解复杂函数优化问题,基于量子计算的相关概念和原理,提出一种实数编码量子进化算法.首先构造了由自变量向量的一个分量和量子比特的一对概率幅为等位基因的三倍体染色体,增加了解的多样性;然后利用量子旋转门和依据量子比特概率幅满足归一化条件设计的互补双变异算子进化染色体,实现局部搜索和全局搜索的平衡.标准函数仿真表明,该算法适合求解复杂函数优化问题,具有收敛速度快、全局搜索能力强和稳定性好的优点.  相似文献   

3.
特征选择作为一种数据预处理技术被广泛研究,由于其具有NP难度而一直无法找到有效的求解方法。鉴于目前在特征选择中应用较多的遗传算法存在进化机制上的局限,将量子进化算法应用于特征选择,提出了一种基于改进量子进化算法的特征选择算法。以增加种群多样性和提高寻优性能为目标改进了量子进化算法,以Fisher比和特征维度为特征子集的评价准则构造了适应度函数,按照量子进化算法求解优化问题的步骤设计了特征选择算法。使用UCI数据库中的数据集对三种算法作对比验证,通过识别重要特征、提高学习算法性能、特征选择效率三组实验,结果表明,该算法能够识别出重要特征,并随着数据集特征维度升高,特征选择的性能逐渐优于对比算法,到了高维数据集,特征选择效率明显优于对比算法。  相似文献   

4.
量子进化算法研究现状综述   总被引:7,自引:0,他引:7  
在介绍基本量子进化算法(QEA)的基础上,重点归纳总结了最近几年量子进化算法在算法机理和性能方面以及在算法的种群改进、编码扩展、算子创新、算法融合等应用方面的研究成果,进而提出了量子进化算法在模式理论、多目标进化、算法研究、应用等方面进一步的研究内容.  相似文献   

5.
一种新的混合量子进化算法   总被引:2,自引:1,他引:2  
量子进化算法(QEA)用于多峰函数优化时,容易陷入局部最优.本文提出一种新的混合量子进化算法,通过双编码机制(经典二进制编码和量子概率编码),以及经典交叉和量子概率编码更新策略,实现了经典遗传算法与量子进化算法的有机结合,在发挥经典遗传算法全局优化能力的同时,利用量子概率搜索提高了算法的局部搜索能力.通过一组典型函数优化实验对该算法的性能进行了考察,并与QEA进行了比较.结果表明,本文算法在解的质量和收敛速度上都要优于QEA.  相似文献   

6.
针对监督分类中的特征选择问题, 提出一种基于量子进化算法的包装式特征选择方法. 首先分析了现有子集评价方法存在过度偏好分类精度的缺点, 进而提出基于固定阈值和统计检验的两种子集评价方法. 然后改进了量子进化算法的进化策略, 即将整个进化过程分为两个阶段, 分别选用个体极值和全局极值作为种群的进化目标. 在此基础上, 按照包装式特征选择遵循的一般框架设计了特征选择算法. 最后, 通过15个UCI数据集分别验证了子集评价方法和进化策略的有效性, 以及新方法相较于其它6种特征选择方法的优越性. 结果表明, 新方法在80%以上的数据集上取得相似甚至更好的分类精度, 在86.67%的数据集上选择了特征个数更小的子集.  相似文献   

7.
基于多目标进化算法的入侵检测特征选择   总被引:2,自引:0,他引:2       下载免费PDF全文
针对入侵检测系统要求检测率和误报率均衡优化,提出一种由顺序搜索策略改进的多目标进化算法,对特征空间进行压缩,以选择最优特征子集。实验结果表明,改进的多目标进化算法实现了检测率与误报率的均衡优化,较好地提高了入侵检测系统的性能。  相似文献   

8.
求解组合优化问题的改进型量子进化算法   总被引:2,自引:0,他引:2  
根据组合优化问题的特点,提出了一种求解组合优化问题的改进型量子进化算法.借鉴小生境协同进化思想初始化种群,增加了个体多样性;采用动态策略调整量子门旋转角,加快了收敛速度;采用优体交叉策略实施染色体交叉操作,增强了局部搜索能力.利用典型组合优化问题--2个多维0/1背包问题实例对算法性能进行验证,结果表明了该算法的可行性和有效性.  相似文献   

9.
针对量子进化算法(QEA)求解二进制编码问题比较有效,而求解多进制编码问题则比较困难,提出一种概率进化算法(PEA)。该算法汲取了量子复合位、叠加态等思想,采用由观测概率构成的概率复合位进行编码,观测和更新操作直接针对观测概率进行。PEA保持了QEA的性能,运算速度远优于QEA,并可以采用任意进制编码。函数优化和背包问题实验验证了PEA的有效性。  相似文献   

10.
本文针对目前计算机网络最佳路由选择算法中在寻优性能和收敛性能上的不足,提出了改进计算机路由选择的量子进化算法,以传统的量子进化算法为基础,对旋转角采取相应的调整措施,对此进行优化,进而提高搜索速度和寻优精度,并以量子的空间位置和相位角来优化调整旋转角的方向。  相似文献   

11.
针对阻塞流水车间调度问题(BFSP),提出了一种新颖的量子差分进化(NQDE)算法,用于最小化最大完工时间。该算法将量子进化算法(QEA)与差分进化(DE)相结合,设计一种新颖的量子旋转机制控制种群进化方向,增强种群多样性;采用高效的基于变邻域搜索的量子进化算法(QEA-VNS)协同进化策略增强算法的全局搜索能力,进一步提高解的质量。基于Taillard's benchmark实例仿真,结果表明,所提算法在最优解数量上明显高于目前较好的启发式算法--INEH,改进了110个实例中64个实例的当前最优解;在性能上也优于目前有效的元启发式算法--新型蛙跳算法(NMSFLA)和混合量子差分进化(HQDE),产生最优解的平均百分比偏差(ARPD)均下降约6%。NQDE算法适合大规模阻塞流水车间调度问题。  相似文献   

12.
混合量子算法及其在flow shop问题中的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
量子进化算法(QEA)是目前较为独特的优化算法,它的理论基础是量子计算。算法充分借鉴了量子比特的干涉性、并行性,使得QEA求解组合优化问题具备了可行性。由于在求解排序问题中,算法本身存在收敛慢,没有利用其它未成熟个体等缺陷,将微粒群算法(PSO)及进化计算思想融入QEA中,构成了混合量子算法(HQA)。采用flow shop经典问题对算法进行了测试,结果证明混合算法克服了QEA的缺陷,对于求解排序问题具有一定的普适性。  相似文献   

13.
基于免疫量子进化算法的负载均衡策略   总被引:1,自引:0,他引:1  
苏日娜  王宇 《计算机工程》2011,37(2):154-156
在集群系统任务调度和分配中,提出一种基于免疫量子进化算法的负载均衡策略。该策略采用量子化编码和量子进化操作优化任务分配,在量子陷入局部极值下,引入免疫操作进行接种疫苗和免疫选择,从而增加种群多样性。仿真结果表明,与SGALB策略相比,该策略具有更高的搜索效率,其集群系统的整体性能更优。  相似文献   

14.
为了提高粒子群优化(PSO)算法的优化效率,结合量子理论提出一种基于Bloch球面坐标的量子粒子群优化算法。在Bloch球面坐标下,粒子自动更新旋转角大小和粒子位置,不需将旋转角以查询表的形式设定(或设定为区间上的固定值),弥补了Bloch球面坐标下量子进化算法和量子遗传算法的不足,算法更具有普遍性;用量子Hadamard门实现粒子的变异,增强了种群的多样性,促使粒子跳出局部极值点。对典型函数优化问题的仿真结果表明,提出的算法稳定性强,精度高,收敛速度快,具有一定的实用价值。  相似文献   

15.
进化参量的选取对量子衍生进化算法(QEA)的优化性能有极大的影响,传统QEA在选择进化参量时并未考虑种群中个体间的差异,种群中所有个体采用相同的进化参量完成更新,导致算法在解决组合优化问题中存在收敛速度慢、容易陷入局部最优解等问题。针对这一问题,采用自适应机制调整QEA的旋转角步长和量子变异概率,算法中任意一代的任一个体的进化参量均由该个体自身适应度确定,从而保证尽可能多的进化个体能够朝着最优解方向不断靠近。此外,由于自适应量子进化算法需要评估个体的适应度,导致运算时间较长,针对这一问题则采用多宇宙机制将算法分布于多个宇宙中并行实现,从而提高算法的执行效率。通过搜索多峰函数最优解和求解背包问题测试算法性能,结果表明,与传统QEA相比,所提出算法在收敛速度、搜索全局最优解及执行速度方面具有较好的表现。  相似文献   

16.
多宇宙并行量子多目标进化算法   总被引:1,自引:1,他引:1       下载免费PDF全文
提出了一种新的基于量子计算的多目标进化算法,即多宇宙并行量子多目标进化算法。算法中将所有的量子个体按给定的拓扑结构分成多个独立子种群,划分为多个宇宙;采用目标个体均匀分配原则和动态调整旋转角机制对各宇宙量子个体进行演化;宇宙之间采用最佳移民操作来交换信息,设计最优个体保留方案以便各宇宙共享全局信息,提高算法的执行效率。该算法用于多目标0/1背包问题的仿真结果表明:新方法能够找到接近Pareto最优前端的更好的解,同时维持解分布的均匀性。  相似文献   

17.
一种改进型量子遗传算法   总被引:5,自引:2,他引:5       下载免费PDF全文
张宗飞 《计算机工程》2010,36(6):181-183
针对量子遗传算法在复杂连续函数优化中存在的收敛速度慢、易陷入局部极值等缺点,提出一种改进型量子遗传算法。采用动态策略调整量子门旋转角,以加快收敛速度,采用优体交叉策略实施交叉操作,以增强局部搜索能力。通过典型复杂连续函数的测试验证该算法的可行性和有效性。  相似文献   

18.
一种用于BP网络优化的并行模拟退火遗传算法   总被引:3,自引:0,他引:3  
针对模拟退火算法和遗传算法存在的不足,提出了并行模拟退火遗传算法,并用于3层BP神经网络优化。在适应度函数中引入模拟退火机制,采用排序、最优保存策略选择算子、启发式交叉和多点非均匀变异改进遗传算子,利用模拟退火算法产生新解增加搜索方向,并结合并行进化思想对经典遗传算法进行改进。通过对英文字母识别的仿真实验,表明该方法全局搜索能力、局部搜索能力和收敛速度都优于经典遗传算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号