首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the present investigation solar water pumps using packed-bed collectors have been developed. It has been experimentally observed that the performance behaviour of such pumps is much superior to that of a solar water pump using conventional plain collectors. Among the solar water pumps developed, the one using iron-turning packed-bed collectors exhibits the best performance. It is interesting to conclude that the performance of a solar water pump using conventional (plain) collectors can be improved appreciably just by packing the collectors with metallic materials.  相似文献   

3.
This paper presents an analysis of the performance of a solar water heating system with natural thermosyphon circulation between the collector and the storage tank. The analysis is based on the formulation by Ong except that provision for withdrawal of hot water from the tank (for domestic/ industrial use) has been made in the energy balance equation; further in contrast to the use of the finite difference method by Ong, explicit expressions have been obtained. The results of the present analysis (in the absence of withdrawal of hot water from the tank) are seen to be in better agreement with experiments than the corresponding results of Ong, obtained by use of the finite difference method.

Numerical results, corresponding to hot water retrieved from the storage tank, have been presented for two modes of hot water withdrawal viz. the constant flow rate and constant mean storage tank water temperature.  相似文献   


4.
The research goal was to develop a new solar water heater system (SWHS) that used a solar water pump instead of an electric pump. The pump was powered by the steam produced from a flat plate collector. Therefore, heat could be transferred downward from the collector to a hot water storage tank. The designed system consisted of four panels of flat plate solar collectors, an overhead tank installed at an upper level and a large water storage tank with a heat exchanger at a lower level. Discharge heads of 1, 1.5 and 2 m were tested. The pump could operate at the collector temperature of about 70–90 °C and vapor gage pressure of 7–14 kPa. It was found that water circulation within the SWHS ranged between 12 and 59 l/d depending on the incident solar intensity and system discharge head. The average daily pump efficiency was about 0.0014–0.0019%. Moreover, the SWHS could have a daily thermal efficiency of about 7–13%, whereas a conventional system had 30–60% efficiency. The present system was economically comparable to a conventional one.  相似文献   

5.
In this paper, a techno-economic model has been developed for a solar still coupled with a flat-plate collector through a heat-exchanger. The model is based on the establishment of periodic steady-state conditions. The economic criterion used in the model is based on the least cost of a unit mass of distilled water evaluated from the life-cycle costing of the system. To evaluate the model, numerical calculations have been made corresponding to the climate of Delhi (India). It is concluded that the addition of a solar collector enhances the distillate yield; however, this is not always economical. This system therefore needs careful and economic system design.  相似文献   

6.
In this paper, a transient analysis of a forced circulation solar water heating system with and without heat exchangers in the collector loop and storage tank has been presented for a parallel flat plate collector. The effect of various water heating system parameters on its performance have been studied. Numerical calculations have been made for a typical cold day viz. 26 January 1980 in Delhi.  相似文献   

7.
A solar water heater constructed from readily available materials in the countryside has earlier been discussed in the continuous flow mode. Water flows in the tubes at a constant rate throughout the day. In any realistic situation, however, the rate of flow will be a function of time depending on the requirements of the user. In this paper a theoretical method is developed which is used to predict the outlet water temperature of the time dependent flows. The effect of various design parameters like the position of the water pipes, choice of sensible heat storage material etc. are discussed taking different functions of rate of flow. The inexpensive water heater can provide hot water for a small household even in the late evening hours provided no heat is withdrawn from the system during the day time.  相似文献   

8.
The operation of a continuous flow type domestic solar water heater is explained with the help of a schematic diagram. Steady state thermal analysis of such a water heater is carried out. A water heater of this type with a collector area of 1 m2 is subjected to tests. The experimental results are compared with predicted results. The experimental results have also been compared with those obtained from a water heater operating on thermosiphon flow. The performance of the continuous flow type water heater is shown to be comparable to that of the thermosiphon flow type. It is concluded that, in the Indian context, the continuous flow type water heater has more advantages than the thermosiphon flow type water heater in view of its low capital cost and the ease of operation and maintenance.  相似文献   

9.
In this note an analysis of an inverted flat plate solar collector has been presented. Effect of various parameters, namely thickness of the insulation, air conductance between flowing water and top of the bottom insulation, length of the collector and flow velocity of water on the performance of the collector have been studied. Numerical calculations have been made for typical cold day in Delhi, namely 26 January 1980.  相似文献   

10.
Based on a simple transient analysis, an explicit expression for the temperature of air, flowing through the channel of a suspended flat-plate solar air heater, has been developed as a function of time and space co-ordinates. Investigations regarding the effect of various parameters, such as air velocity, air channel depth and inlet air temperature, on the performance of the system have been carried out under two modes of operation; (1) the time is kept constant while the space co-ordinate along the flow direction is varied, and (2), the latter is kept constant while the former is varied.  相似文献   

11.
In the research presented in this paper the thermal performance of a solar water heater combined with a heat pump is studied. A solar collector was modified from corrugated metal roofing with a copper tube attached beneath. The performance of the solar water heater was tested, and models for the collector efficiency and storage tank were developed and used for the evaluation of their performance when combined with a heat pump system.  相似文献   

12.
We present a simplified method which could be used to calculate, to a first approximation, the energy losses from the sides of a solar collector/water heater. The inclusion of energy losses through the side walls of a reasonable thickness reduce the efficiency of the system by about 5%. The integrated side energy losses for the whole day are not equal for the various segments of the wall. Hence, it will be economical to construct wedge shape walls, thickness decreasing downward, instead of usual rectangular walls.  相似文献   

13.
There are various types of solar water heater system available in the commercial market to fulfill different customers’ demand, such as flat plate collector, concentrating collector, evacuated tube collector and integrated collector storage. A cost effective cum easy fabricated V-trough solar water heater system using forced circulation system is proposed. Integrating the solar absorber with the easily fabricated V-trough reflector can improve the performance of solar water heater system. In this paper, optical analysis, experimental study and cost analysis of the stationary V-trough solar water heater system are presented in details. The experimental result has shown very promising results in both optical efficiency of V-trough reflector and the overall thermal performance of the solar water heater.  相似文献   

14.
A cylindrical collector-cum-storage type solar water heater has been designed, developed and tested. Its year round performance has been carried out and reported in this paper. The heater can provide 50 litres of hot water at 50–60°C in the afternoon and a temperature of 35°C can be retained till the next day for early morning use. The heater receives approximately 30% more radiation as compared to a flat surface. The economics of the heater has been worked out and it has been found that the cost can be recovered within one year.  相似文献   

15.
This research target was to improve the thermal efficiency of a solar water heating system (SWHS) coupled with a built-in solar water pump. The designed system consists of 1.58-m2 flat plate solar collectors, an overhead tank placed at the top level, the larger water storage tank without a heat exchanger at the lower level, and a one-way valve for water circulation control. The discharge heads of 1 and 2 m were tested. The pump could operate at the collector temperature of about 70–90 °C and vapor gage pressure of 10–18 kPa. It was found that water circulation within the SWHS ranged between 15 and 65 l/d depending upon solar intensity and discharge head. Moreover, the max water temperature in the storage tank is around 59 °C. The max daily pump efficiency is about 0.0017%. The SWHS could have max daily thermal efficiency of about 21%. It is concluded that the thermal efficiency was successfully improved, except for the pump one. The new SWHS with 1 m discharge head or lower is suitable for residential use. It adds less weight to a building roof and saves electrical energy for a circulation pump. It has lower cost compared to a domestic SWHS.  相似文献   

16.
Testing solar collectors as an energy source for a heat pump   总被引:1,自引:0,他引:1  
A. Georgiev   《Renewable Energy》2008,33(4):832-838
The article presents the experimental study of a heat pump possessing solar collectors as an energy source. A method to test the combined work of collectors delivering heat to the evaporator of a heat pump was devised. The layout of the test facility is shown and the system construction with the measurement equipment is described. The planning experiment to test the installation was chosen. The medium fluid condenser temperature , the fluid condenser mass flow rate and the medium fluid evaporator temperature were chosen as experiment factors to determine both objective functions—the coefficient of performance (COP) of the heat pump and the efficiency of the system ηs. The reverberation of both objective functions is shown.  相似文献   

17.
For a novel prototype solar collector, using a plate heat pipe, condenser heat transfer was analysed in detail. The condenser has the shape of a rectangular channel. Flow and heat transfer of water in the rectangular channel was modelled and the heat transfer coefficient assessed, using the Fluent code. Under typical operating conditions a mixed convection situation occurs. The channel is inclined and heating is through one wall only (upper channel surface). The range of temperature differences considered was similar to the one verified under real operating conditions, covering a wide range of Grashof numbers. Results showed that the Nusselt number is significantly higher than the one for forced convection in a rectangular channel with fully developed boundary layers. In order to enhance heat transfer, a modification to the rectangular channel was analysed, using baffles to improve flow distribution and increase velocity. The effect of this modification on collector energy performance (efficiency) was assessed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A solar thermophotovoltaic converter using PbS photovoltaic cells is proposed. The converter is in the form of a flat plate consisting of a heat mirror, a black absorber, a cell filter and PbS photovoltaic cells. Theoretical analysis shows that, ideally, the efficiency of such a system is about 30%.  相似文献   

19.
Heat-pipe enhanced solar-assisted heat pump water heater   总被引:4,自引:0,他引:4  
A heat-pipe enhanced solar-assisted heat pump water heater (HPSAHP) is studied. HPSAHP is a heat pump with dual heat sources that combines the performance of conventional heat pump and solar heat pipe collector. HPSAHP operates in heat-pump mode when solar radiation is low and in heat-pipe mode without electricity consumption when solar radiation is high. HPSAHP can thus achieve high energy efficiency. A prototype was designed and built in the present study. An outdoor test for a HPSAHP in the present study has shown that COP of the hybrid-mode operation can reach 3.32, an increase of 28.7% as compared to the heat-pump mode COP (2.58).  相似文献   

20.
Flat collectors are usually not air or water tight. Therefore, they can exchange air and moisture with the environment. Moisture can accumulate in the collector, especially when the thermal insulation material acts as a storage for moisture (for example mineral wool). The moisture can increase the corrosivity of the micro-climate in the collector. An optimised ventilation rate, which is a measure of the air exchange between the collector and the environment, with respect to the moisture absorption properties of the thermal insulation materials helps to keep the collector dry. Optimum might be a relatively high ventilation if the collector case is not designed to be completely tight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号