首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pneumatic system is frequently operated in the high air velocity region, which aggravates the power consumption and erosion of bend, and the intensive study of the particles motion characteristic on a horizontal-vertical pneumatic conveying in various curved 90° bends is necessary. This experimental study focuses on the particles motion characteristic of bend on the horizontal-vertical pneumatic conveying with oscillatory flow (generated by installing the oscillator) in terms of on pressure drop, powder consumption, the evolution of particle velocity and particle fluctuating intensity during flowing through bends. The results indicate that powder consumption can be reduced by using oscillatory flow, which is more obvious with a larger radius ratios bend. Meanwhile, the pressure drop proportion of bend is higher than average pressure drop of the system within the same distance. Otherwise, the total reduction particles velocity through bend is less while using oscillatory flow, which is more obvious using larger radius ratios bend. The particle velocity using oscillatory flow is higher than that of the conventional pneumatic conveying for the cases of larger radius ratios bend, and this effect is less evident while through a smaller radius bend.  相似文献   

2.
《Advanced Powder Technology》2020,31(6):2285-2292
To reduce the power consumption of a horizontal-vertical pneumatic conveying system, an oscillator is mounted with a 45° oblique plane through the pipe axis in this study. This experimental study focuses on the effect of oscillatory flow using the oscillator on the horizontal-vertical pneumatic conveying system in terms of the overall pressure drop of the system, power consumption, local pressure drop, and particle velocity. Compared with conventional pneumatic conveying (axial-flow), the pressure drop and power consumption can be reduced using the oscillatory flow in a lower air velocity range. Meanwhile, the particle axial velocity of the oscillatory flow is higher than that of the axial-flow near the bottom of pipe. This outcome indicates that the accelerating effect of oscillatory flow is obvious near the bottom of the pipe, and the particle vertical velocity of the oscillatory flow is positive, whereas the particle vertical velocity of the axial-flow is almost negative. This result shows that the particles of the oscillatory flow are suspended sufficiently, but the particles of the axial-flow have a tendency of deposition. Furthermore, the fluctuation intensity of the particle velocity of the oscillatory flow is higher than that of the axial-flow, especially near the bottom of the pipe.  相似文献   

3.
ABSTRACT

A horizontal dilute-phase pneumatic conveying system using vertically oscillating soft fins at the inlet of the gas–particle mixture was studied to reduce the power consumption and conveying velocity in the conveying process. The effect of different fin lengths on horizontal pneumatic conveying was studied in terms of the pressure drop, conveying velocity, power consumption, particle velocity, and intensity of particle fluctuation velocity for the case of a low solid mass flow rate. The conveying pipeline consisted of a horizontal smooth acrylic tube with an inner diameter of 80 mm and a length of approximately 5 m. Two types of polyethylene particles with diameters of 2.3 and 3.3 mm were used as conveying materials. The superficial air velocity was varied from 10 to 17 m/s, and the solid mass flow rates were 0.25 and 0.20 kg/s. Compared with conventional pneumatic conveying, the pressure drop, MPD (minimum pressure drop), critical velocities, and power consumption can be reduced by using soft fins in a lower air velocity range, and the efficiency of fins becomes more evident when increasing the length of fins or touching particles stream by the long fins. The maximum reduction rates of the MPD velocity and power consumption when using soft fins are approximately 15% and 26%, respectively. The magnitude of the vertical particle velocity for different lengths of fins is clearly lower than that of the vertical particle velocity for a non-fin conveying system near the bottom of the pipeline, indicating that the particles are easily suspended. The intensities of particle fluctuation velocity of using fins are larger than that of non-fin. The high particle fluctuation energy implies that particles are easily suspended and are easily conveyed and accelerated.  相似文献   

4.
《Advanced Powder Technology》2021,32(8):3136-3148
To reveal the particle dynamic characteristic in the bend, high-speed particle image velocimetry (PIV) and wavelet transform were used to measure and analyze the particle velocity in a horizontal-vertical pneumatic conveying system. The pressure drop and particle velocity are analyzed to elucidate the macroscopic motion properties of particles in the different radius ratio bend firstly. Then the methods of continuous wavelet transform and one-dimensional discrete orthogonal wavelet transform are used to analyze the particle dynamic characteristic in the different regions of the bend pipe in terms of time–frequency characteristics of particle fluctuation velocity, fluctuation energy distributions of wavelet components, and auto-correlation of various frequencies. The results show that the particles are mainly small-scale motion in the rapidly decreasing region, while the large-scale motion increases in the accelerating region near the inlet and the stable region near the outlet. And the results of the wavelet component show that the acceleration and deceleration of particles in the bend will decrease the proportion of high-frequency fluctuation energy. The auto-correlation coefficient of the high-frequency component decays slower and has a longer period at the critical position of the three regions.  相似文献   

5.
Numerical simulation of particle motion in dense phase pneumatic conveying   总被引:1,自引:0,他引:1  
A gas-solids two-dimensional mathematical model was developed for plug flow of cohesionless particles in a horizontal pipeline in dense phase pneumatic conveying. The model was developed based on the discrete element method (DEM). For the gas phase, the Navier-Stokes equations were integrated by the semi-implicit method for pressure-linked equations (SIMPLE) scheme of Patankar employing the staggered grid system. For the particle motion the Newtonian equations of motion of individual particles were integrated, where repulsive and damping forces for particle collision, the gravity force, and the drag force were taken into account. For particle contact, a nonlinear spring and dash pot model for both normal and tangential components was used. In order to get more realistic results, the model uses realistic pneumatic system and material values.  相似文献   

6.
This paper presents a simple method for predicting particle attrition during pneumatic conveying. The model calculates the changes in the particle size during pneumatic conveying (as a result of the collisions between the particles and bend walls) by using empirical correlations for both the machine and material functions. The method does not require the use of complicated simulations such as DEM–CFD. Furthermore, the computational model was written in MATLAB, and the results agree well with the experimental results for salt particles. The computation time was very short: a few seconds for the first collision (particles passed through one bend), and below one minute for six collisions. The experimental results and parametric study show that higher bend radius ratios caused less damage to the conveyed material. Moreover, higher air velocities and larger pipe diameters caused more damage to the conveyed material.  相似文献   

7.
The pneumatic system is frequently operated in the high air velocity region, which aggravates the power consumption and erosion of bend, and the dynamic analysis of particles in bends with different radius of curvature in a horizontal-vertical pneumatic conveying system is necessary. This experimental study focuses on the particle motion characteristic of bend on the horizontal-vertical pneumatic conveying in terms of on pressure drop, particle velocity, power spectral characteristics of particle fluctuation velocity, the energy distribution of the proper orthogonal decomposition (POD) modes, time coefficients of POD, and spatial mode of POD mode during flowing through bends. The results indicate that the particle rope is the large-scale motion of particles containing high energy, which dominates the motion of particles in the bend, and the suppression of small-scale motion leads to the low pressure drop in a large radius ratio of the bend.  相似文献   

8.
The effect of particle size distribution on the hydrodynamics of dilute-phase pneumatic conveying system was analyzed using computational particle fluid dynamics (CPFD) simulation. The influence of a simulation parameter, i.e., correction factor of drag coefficient (k), on the hydrodynamics of pneumatic conveying system was determined via CPFD simulation. When results of simulation were compared with experimental data of previous studies, the average error of pressure drop per length predicted by the CPFD approach with the correction factor was below 4.4%. Saltation velocity and the pressure drop per unit length declined as the drag force coefficient increased. Simulation results also revealed that the pressure drop per length and the saltation velocity were decreased when the fine powder fraction in the particle size distribution was increased, although the width of particle size distribution was widened, and the standard deviation was increased. Finally, the Relative Standard Deviation (RSD) of pressure drop per length was measured and compared with median diameter (d50), Sauter mean diameter, geometric mean diameter, and arithmetic mean diameter. The RSD of the Sauter mean diameter was 5.8%, approximately twice less than the RSD value of d50 commonly used in pneumatic conveying.  相似文献   

9.
Pneumatic conveying is widely used for transporting bulk solids in chemical, process and agricultural industries. It is environmentally friendly, flexible and can be fully automated. But it can also involve high power consumption, wear, abrasion, blockage and particle degradation. Hence understanding the physics can help to optimise design and operation. Conveying in a horizontal pipe involves complex multiphase flows, potentially with lean and dense phase regions, stationary particles and blockage.The Distinct Element Method (DEM) is a powerful tool to study granular dynamics. It models interactions at the particle level and reproduces the assembly physics. This paper presents a 3D DEM model to predict pressure drop, flowrate and flow patterns in pneumatic conveying. The inter-particle forces are modelled using the spring-dashpot-slider analogy. A novel gas flow model is developed. The pipe is divided into sections. In each section a lean and dense region is determined on a voidage criterion based on particle positions. Given the pressure at the boundaries, the fluid flow is determined assuming steady state conditions. This uses the Ergun equation for the flow through the dense phase and the equations of Wen and Yu for modified single spheres and wall resistance for the lean phase. It uses an iterative algorithm adjusting the fluid flowrate so that the pressure in each section is the same in the dense phase and lean phase and maintaining the boundary pressures. Once the fluid flow profile has been calculated the fluid drag on each particle can be determined. The results compare well with experimental data relating pressure gradient and solid and gas flowrates from Molerus (1993), Molerus (1996). Flow patterns for all the flow regimes, fully suspended flow, strand flow, slug flow, and conveying over stationary layer are observed.  相似文献   

10.
To solve the problem of energy loss during pneumatic conveying, a new energy-saving method of pneumatic transportation, pulse excitation flow, is proposed and applied to the transportation of petroleum coke. Firstly, the minimum pressure drop velocity of petroleum coke transported by pulse excitation flow is obtained through experimental research, and then the energy-saving mechanism of pulse excitation flow is explored through CFD-EDM coupling. The experimental results show that the energy loss coefficient of pulse excitation flow is reduced by 12.6% compared with axial flow. The numerical results show that the pulse excitation flow will produce alternating positive and negative vortices, and using the pulse excited flow conveying can make the particles enter the suspension region 6D earlier and reduce the energy loss, which further indicates that the gas–solid coupling effect of the pulsed excitation flow is more conducive to the dispersion and acceleration of the particles compared with axial flow.  相似文献   

11.
《Advanced Powder Technology》2020,31(8):3342-3350
Breakage of dairy powder during pneumatic conveying negatively affects the end-customer properties (scoop uniformity and reconstitution). A dilute phase pneumatic conveying system was built to conduct studies into this problem using whey protein isolate powder (WPI) as the test material. Effects of conveying air velocity (V), solid loading rate (SL), pipe bend radius (D), and initial particle size (d) on the level of attrition were experimentally studied. Four quality characteristics were measured before and after conveying: particle size distribution, tapped bulk density, flowability, and wettability. The damaged WPI agglomerates after conveying give rise to many porous holes exposed to the interstitial air. V is the most important input variable and breakage levels rise rapidly at higher airspeeds. The mean volume diameter D[4,3] decreased by around 20% using the largest airspeed of 30 m/s. Powder breakage is also very sensitive to particle size. There appears to be a threshold size below which breakage is almost negligible. By contrast, SL and D show lesser influence on powder breakage. Reflecting the changes in particle size due to breakage, tapped bulk density increases whereas wettability decreases as a result of an increase in conveying air velocity. However, breakage does not show a significant effect on powder flowability as powder damage not only decreases particle size but also changes the particle’s surface morphology.  相似文献   

12.
《Advanced Powder Technology》2019,30(12):3163-3170
This paper presents a numerical study on the conveying of particles in a vibrating vessel under microgravity. Such a vessel is composed of parallel plates with sawtooth wavy surfaces, which are specifically designed to convey particles using simple vibration. The numerical model was validated by good agreement between the simulated and experimental results. Then the effects of key variables, including the vessel geometry, vibration amplitude and frequency and gravity level, were systematically investigated by a series of controlled simulations. The results confirm the optimised design from the previous experiments, and numerically demonstrate that using such a system a steady conveying operation can be achieved under microgravity. The convey rate is positively affected by the vibration amplitude and frequency in a complicated way, which cannot be simply described by the commonly used vibration intensity or velocity amplitude. The gravity level also has a significant effect on the convey rate when it is over 0.001g. The convey rate can be estimated by the product of the average solid fraction and velocity. And the effects of the variables can be better understood through the analyses on these two parameters. Finally, a predictive model is proposed to estimate the convey rate under different operational conditions. The findings are useful for the design of particle conveying techniques for outer space applications.  相似文献   

13.
基于多分辨率分析和分水岭的图像分割方法   总被引:3,自引:0,他引:3  
提出了一种基于小波多分辨率分析和分水岭算法的图像分割方法.在小波分解后的低分辨率图像上进行分水岭分割,提高了分割的速度;由低分辨率图像返回到高分辨率图像时,采用了一种基于边缘信息的合并函数,避免了边缘信息的丢失,保证了分割的准确性.此外预处理过程中,在梯度图像上基于Rayleigh分布采用阈值处理的方法,有效抑制了高斯噪声对梯度图像的影响,避免了过分割.实验结果证明,本文所提出的基于小波多分辨率分析的图像分水岭分割算法能够很好地兼顾算法的效率和分割的准确性.  相似文献   

14.
Wavelet analysis of plate wave propagation in composite laminates   总被引:11,自引:0,他引:11  
A new approach is presented for the analysis of transient waves propagating in composite laminates. The wavelet transform (WT) using the Gabor wavelet is applied to the time–frequency analysis of dispersive plate waves. It is shown that the peaks of the magnitude of WT in the time–frequency domain are related to the arrival times of group velocity. Experiments are performed using a lead break as the simulated acoustic emission source on the surface of quasi-isotropic and unidirectional graphite/epoxy laminates. For predictions of the dispersion of the flexural mode, Mindlin plate theory is shown to give good agreement with the experimental results. The planar source location based on the flexural wave is performed using a triangulation method. The use of frequency-dependent arrival time of output signal and angular dependence of group velocity provides accurate results of source location for anisotropic laminates.  相似文献   

15.
A wavelet multi-resolution cross-correlation analysis was developed and applied to experimental pressure-time signals in order to analyze the characteristics of swirling gas-solid flow in both Fourier and physical spaces. The experiment was carried out in a horizontal pipe with a length of 7.5 m and an inner diameter of 76 mm. The initial swirl number based on the total inflow was varied from 0.0 to 0.61, the mean gas velocity was varied from 6 to 28 m/s, and the solid mass flow rate was varied from 0.08 to 0.5. From the wavelet multi-resolution correlation analysis of the fluctuating pressure in the range of low air velocity, the characteristics of swirling gas-solid two-phase flows were extracted at various frequencies. Much stronger correlations were found in the range of low frequency, which implied periodic motion of dunes and sliding clusters. Additionally, it was revealed that the motion of a large cluster sliding flow contains two smaller clusters and the moving velocities of dunes were 1 m/s and 2 m/s, respectively. However, no correlation existed at smaller scales of correlation features, which indicated heterogeneous suspension flow.  相似文献   

16.
A wavelet multi-resolution cross-correlation analysis was developed and applied to experimental pressure-time signals in order to analyze the characteristics of swirling gas-solid flow in both Fourier and physical spaces. The experiment was carried out in a horizontal pipe with a length of 7.5 m and an inner diameter of 76 mm. The initial swirl number based on the total inflow was varied from 0.0 to 0.61, the mean gas velocity was varied from 6 to 28 m/s, and the solid mass flow rate was varied from 0.08 to 0.5. From the wavelet multi-resolution correlation analysis of the fluctuating pressure in the range of low air velocity, the characteristics of swirling gas-solid two-phase flows were extracted at various frequencies. Much stronger correlations were found in the range of low frequency, which implied periodic motion of dunes and sliding clusters. Additionally, it was revealed that the motion of a large cluster sliding flow contains two smaller clusters and the moving velocities of dunes were 1 m/s and 2 m/s, respectively. However, no correlation existed at smaller scales of correlation features, which indicated heterogeneous suspension flow.  相似文献   

17.
This study proposed the fluidized particles with dielectric barrier discharge (DBD) plasma in a slot-rectangular divergent-base spouted bed and focused on the dynamics of solid particles with the plasma irradiation. Two bed materials (Polypropylene (PP) particles and Polyamide (PA) particles) with same diameter (3 mm) were fluidized in this study. Fluidization parameters included gas velocity (7.4–14.9 m/s), particle amount (100–500), and plasma parameter (apply voltage, 0 and 7 kV) as the applied voltage were investigated here. Particle velocity profiles were analyzed through the methods of particle image velocimetry (PIV) and particle tracking velocimetry (PTV). Results show that the particle velocity was increased with the plasma irradiation, mainly by the enhancement in the vertical direction. The location of the highest particle velocity area related to the fluidization behavior of particles. With the increase of superficial gas velocity, the location of the highest particle velocity area raised along the central line but not reached the top of the solid bed. While the electron temperature of Ar plasma decreased with the addition of particles. Two electric fields (external electric field and surface charge electric field) presenting in the system were assumed to give the reason for the changes of the particle fluid dynamics.  相似文献   

18.
小波变换具有表征信号局部特征的能力,适于分析信号中的瞬态和奇异现象,并可展示其成份,所以采用小波多分辨率分析方法对激光回波弱信号进行处理。利用这种方法,可以有效消除噪声,提取有用的信号。结果证明小波多分辨率分析对于激光回波信号处理十分有效,提高了信号分析的准确性。  相似文献   

19.
20.
运动背景下多目标跟踪的小波方法   总被引:1,自引:0,他引:1  
为了能从运动背景中检测其中的运动目标,并进行跟踪,提出一种基于小波变换的分层匹配跟踪算法。利用小波分解的多层子图进行分层匹配,估计整个背景的运动矢量;利用差分算法从运动背景中检测出多个运动目标,计算出多个动目标的形心坐标,绘出各动目标的运动轨迹。该算法与传统的块匹配算法相比,滤除了原图像的高频噪声,防止了在含噪原图像上进行块匹配不准确的缺点;另外,在低频分量图像上N×N范围进行块匹配,相当于在原图像上2nN×2nN的范围进行匹配搜索,搜索速度快。当相邻两帧背景运动向量小于10个像素,运动目标相对背景的运动向量小于5个像素时,实验结果证明了此算法的有效性和可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号