首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
为制备稳定的水基磁流体,分别以月桂酸、油酸钠、十二烷基苯磺酸钠作为外层表面活性剂,对包油酸的Fe3O4粒子进行了再包覆.将得到的双层包覆的Fe3O4粒子分别分散在水中,发现以十二烷基苯磺酸钠为外层表面活性剂的磁粒子制成的水分散液的稳定性最佳.利用IR研究其吸附机理,结果显示:内层的油酸通过化学键合吸附在磁粒子表面,外层的十二烷基苯磺酸钠通过物理作用吸附在包油酸的Fe3O4粒子表面.  相似文献   

2.
Polymer magnetic core particles receive growing attention due to these materials owing magnetic properties which are widely used in different applications. The prepared composite particles are characterized with different properties namely: a magnetic core, a hydrophobic first shell, and finally an external second hydrophilic shell. The present study describes a method for the preparation of bi-layered polymer magnetic core particles (diameter range is 50–150 nm). This method comprises several steps including the precipitation of the magnetic iron oxide, coating the magnetite with oleic acid, attaching the first polymer shell by miniemulsion polymerization and finally introducing hydrophilic surface properties by condensation polymerization. The first step is the formation of magnetite nanoparticles within a co-precipitation process using oleic acid as the stabilizing agent for magnetite. The second step is the encapsulation of magnetite into polyvinylbenzyl chloride particles by miniemulsion polymerization to form a magnetic core with a hydrophobic polymer shell. The hydrophobic shell is desired to protect magnetite nanoparticles against chemical attack. The third step is the coating of magnetic core hydrophobic polymer shell composites with a hydrophilic layer of polyethylene glycol by condensation polymerization. Regarding the miniemulsion polymerization the influence of the amount of water, the mixing intensity and the surfactant concentration were studied with respect to the formation of particles which can be further used in chemical engineering applications. The resulting magnetic polymer nanoparticles were characterized by particle size measurement, chemical stability, iron content, TEM, SEM, and IR.  相似文献   

3.
Nanocrystalline Ni3Fe powders were obtained via wet mechanical alloying using benzene as surfactant. The differential scanning calorimetry (DSC) measurements showed the presence of an exothermic peak which does not correspond to any phase transformation or phase formation as was proved by X-ray diffraction measurements. The exothermic peak was observed neither for the dry milled samples nor for the wet milled and subsequently annealed powders at 350 °C for 4 h. The infra-red (IR) spectra registered for the wet milled samples showed a series of vibration bands corresponding to C6H6 and also to a series of fragments resulting from benzene decomposition. The results obtained by IR investigation were confirmed by thermogravimetry and mass spectrometry (TG + MS) investigations. The main fragments resulting from the benzene decomposition on the surface of the nanocrystalline Ni3Fe powders are: CO2, CO and C. The evolution of the particle size distribution versus the milling time has been determined for the wet mechanical milling process of nanocrystalline Ni3Fe powders. The DSC analysis reveals a displacement of the exothermic peak onset towards lower temperatures and an increase of the surface of this peak attributed to the changes in the particles specific surface and to the quantity of benzene added in the milling experiments.  相似文献   

4.
Magnetic iron-oxide nanoparticles have been prepared by flame spray pyrolysis (FSP) under controlled atmosphere. This way controlled and direct flame synthesis of Fe2O3 (maghemite), Fe3O4 (magnetite) and FeO (wustite) particles is possible by a scalable process. The Fe oxidation state was controlled by varying the fuel to air ratio during combustion as well as by varying the valence state of the applied Fe precursor. The as-prepared materials were characterized by electron microscopy, nitrogen adsorption, X-ray diffraction and Raman spectroscopy. Magnetic properties were investigated with SQUID, which unravelled superparamagnetic behaviour for all materials and typical features for the corresponding crystal structures and particle sizes. Maximum magnetisation was achieved for a mixture of maghemite and magnetite.  相似文献   

5.
The process control agent (PCA) stearic acid has been used to prevent excessive cold welding during mechanical milling of an Al–TiO2 powder mixture. Gradual decomposition of the stearic acid during high-energy ball milling caused contamination of the powder with carbon. The decomposition rate was found to be 3–4 times faster when 2.5 wt.% instead of 5 wt.% of PCA have been used. This resulted in a higher degree of powder contamination—in the early stages of milling—for a lower initial PCA addition. The degree of contamination with carbon can readily be estimated by thermogravimetry and by the size of an endothermic peak at 875 °C, due to a reaction between aluminium carbide and titanium aluminide, in the trace of differential scanning calorimetry experiments.  相似文献   

6.
As a new approach, LiFePO4 nanoparticles were directly synthesized from precursors iron(III) nitrate and lithium dihydrogen phosphate by a polyol process without post heat treatment in one step. The obtained powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and combined thermogravimetry and differential scanning calorimetry and mass spectroscopy TG/DSC/MS. The X-ray diffraction showed the orthorhombic crystal structure of LiFePO4 without any impurity phases. The synthesized LiFePO4 has rhombohedral morphology with high aspect ratio with a thickness of less than 100 nm. TG/DSC/MS revealed a weight loss of only 10.9 wt.% when heating up to 1000 °C. Electrodes prepared from the LiFePO4 particles were electrochemically characterized by cycling at 0.1C current rate and temperatures in half cell measurements against lithium foil between 2 and 4.2 V in an EC/DMC electrolyte with 1 M LiPF6 as conductive salt. A reversible specific capacity of 146 mAh/g was achieved by applying carbon coating on the rhombohedral particles.  相似文献   

7.
This work presents some results of the synthesis and structural, microstructural, and magnetic characterization of fucan coated cobalt ferrite nanoparticles prepared by using a modified coprecipitation method. Aqueous suspensions of magnetic particles were prepared by coprecipitation of Fe(III) and Co(II) in the presence of NaOH, acid oleic and fucan polymer. The samples were characterized by X-ray diffraction (XRD), electron scanning microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), accelerated surface area, and porosimetry (ASAP/BET-Brunauer-Emmet-Teller) determination and magnetization measurements. Our results reveal that both uncoated and fucan polysaccharide coated CoFe2O4 nanoparticles were successfully obtained. The nanoparticles present sizes between 7 to 20 nm and saturation magnetization of the order of 40 emu/g. The nanoparticles thus obtained are suitable for future applications as a solid support for enzymes immobilization and other biotechnology applications.  相似文献   

8.
The goal of this study was to synthesize Poly(DL-lactide-Co-glycolide) nanoparticles with entrapped magnetite, of under 100 nm in diameter, for future drug delivery applications. The emulsion evaporation method was selected to form poly(lactide-co-glycolide) (PLGA) nanoparticles with entrapped magnetite (Fe3O4) in the polymeric matrix, in the presence of sodium dodecyl sulfate (SDS) as a surfactant. Magnetite, a water-soluble compound, was surface functionalized with oleic acid to ensure its efficient entrapment in the PLGA matrix. The inclusion of magnetite with oleic acid (MOA) into the PLGA nanoparticles was accomplished in the organic phase. Synthesis was followed by dialysis, performed to eliminate the excess SDS, and lyophilization. The synthesized nanoparticles ranged in size from 38.6 to 67.1 nm for naked PLGA nanospheres and from 78.8 to 87.2 nm for MOA-entrapped PLGA nanospheres. The entrapment efficiency ranged from 57.36% to 77.3%.  相似文献   

9.
The novel nanocomposites derived from waterborne polyurethane and nano-Fe3O4 (WPU/Fe3O4) have been successfully synthesized by in situ polymerization progress. The nano-Fe3O4 particles prepared by co-precipitation method were modified by using oleic acid (OA) to improve their compatibility with monomers. The chemical structures, morphology, thermal behavior, mechanical properties, magnetic properties and electrical properties of the WPU/Fe3O4 nanocomposites were investigated by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscope (AFM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMA), vibrating sample magnetometer (VSM) and high resistance meter respectively. The results indicated that the Fe3O4 nanoparticles modified by oleic acid could be homogeneously dispersed in the WPU and the introduction of ones was obviously improving the thermal properties, magnetic properties and electrical properties of WPU/Fe3O4 nanocomposites. The resulting WPU/Fe3O4 nanocomposites would be having the potential applications in microwave absorption.  相似文献   

10.
We report here the synthesis of TbMnO3 nanoparticles via an acrylamide gel route. XRD, TG analysis, DSC analysis, and FTIR spectroscopy are combinatively used to investigate the thermal decomposition process of precursor xerogels and the formation of TbMnO3 phase. It is demonstrated that high-phase-purity TbMnO3 nanoparticles can be prepared by using different chelating agents at a sintering temperature of 800 °C. SEM observation and XRD analysis reveal that the particle size and morphology of the products have a dependence on the chelating agent. The particles prepared using citric acid as the chelating agent appear to be regularly spherical in shape and highly uniform in size with a diameter of ~67 nm, while the sample prepared by using the chelating agent EDTA mainly consists of sphere-, ellipsoid-, and rod-like particles and exhibits a relatively broad particle size distribution with an average particle size centered around 115 nm. The use of a combination of citric acid and EDTA generally results in sphere- and ellipsoid-like particles with an average particle size between those of the samples prepared separately by using the two chelating agents.  相似文献   

11.
超顺磁单分散性Fe3O4磁纳米粒的制备及性能表征   总被引:1,自引:0,他引:1  
具有超顺磁单分散性的Fe3O4磁纳米粒在生物医学材料领域有着广泛的用途. 本研究在水、乙醇和甲苯混合体系74℃回流的条件下制备了具有超顺磁性的表面含油酸的Fe3O4磁纳米粒,研究了制备过程中OH-浓度的变化对磁纳米粒的表面性能、粒径、分散性及磁性能的影响, 并对其机理进行了初步探讨. 采用XRD、FTIR、DLS、TEM和VSM等手段对制备的磁纳米粒进行表征. 结果表明, 当NaOH/Fe(Ⅱ)摩尔比<8时, Fe3O4磁纳米粒表面含油酸可良好地分散于非极性溶剂中, NaOH的加入对磁纳米粒的粒径和饱和磁化强度等性能无明显影响;而当NaOH/Fe(Ⅱ)摩尔比≥8时, Fe3O4磁纳米粒仅能分散于水等极性溶剂中, 饱和磁化强度虽可增至40A·m2/kg, 但为多分散且易团聚.  相似文献   

12.
Boron carbide nanoparticles were produced using commercially available boron carbide powder (0·8 μm). Mechanical milling was used to synthesize Al nanostructured powder in a planetary ball-mill under argon atmosphere up to 20 h. The same process was applied for Al–4 wt % B4C nanocomposite powders to explore the role of nanosize reinforcements on mechanical milling stages. Scanning electron microscopy (SEM) analysis as well as apparent density measurements were used to optimize the milling time needed for completion of the mechanical milling process. The results show that the addition of boron carbide particles accelerate the milling process, leading to a faster work hardening rate and fracture of aluminum matrix. FE-SEM images show that distribution of boron carbide particles in aluminum matrix reaches a full homogeneity when steady state takes place. The better distribution of reinforcement throughout the matrix would increase hardness of the powder. To study the compressibility of milled powder, modified heckel equation was used to consider the pressure effect on yield strength as well as reinforcing role of B4C particles. For better distribution of reinforcement throughout the matrix, r, modified heckel equation was used to consider the pressure effect on yield strength as well as reinforcing role of B4C particles.  相似文献   

13.
In this paper, the effect of various amounts and types of process control agent (PCA), i.e., stearic acid (SA) and ethylene bis-stearamide (EBS), in the production and consolidation behavior of nanocrystalline silver prepared by mechanochemical reduction of Ag2O by graphite was studied. The structural evolution and morphology of powders were investigated using XRD, HRSEM and particle size analyzer techniques. The results showed the nanocrystalline Ag formed after 25 h of milling and the addition of PCA prolonged the synthesis process time. Also, the effect of EBS on prevention of the excessive cold welding of ultra-fine Ag particles in the final stages of milling was more serious than SA. In fact, the presence of PCA effectively inhibited the creation of coarse Ag particles and finally decreased the crystallite size to 14 nm. Moreover, with the addition of PCAs, the Brinell hardness of sintered Ag samples was considerably increased.  相似文献   

14.
In this work, an adsorbent was prepared based on the attachment of organophosphorus acid extractants, namely, D2EHPA, CYANEX 272, and CYANEX 301, to the surface of superparamagnetic magnetite (Fe3O4) nanoparticles. The synthesized nanoparticles were coated with oleic acid, first by a chemisorption mechanism and later by the respective extractant via physical adsorption. The obtained core–shell functionalized magnetite nanoparticle composites were characterized by dynamic light scattering, scanning electron microscopy, transmission electron microscopy, thermogravimetry, infrared absorption and vibrating sample magnetometry. All the prepared nanoparticles exhibited a high saturation magnetization capacity that varied between 72 and 46 emu g−1 and decreased as the magnetite nanoparticle was coated with oleic acid and functionalized. The scope of this study also included adsorption tests for lanthanum, cerium, praseodymium, and neodymium and the corresponding analysis of their results. Sorption tests indicated that the functionalized nanoparticles were able to extract the four studied lanthanide metal ions, although the best extraction performance was observed when the sorbent was functionalized with CYANEX 272, which resulted in a loading capacity of approximately 12–14 mgLa/gMNP. The magnetization of the synthesized nanoparticles was verified during the separation of the lanthanide-loaded sorbent from the raffinate by using a conventional magnet.  相似文献   

15.
Abstract

In this work, an adsorbent was prepared based on the attachment of organophosphorus acid extractants, namely, D2EHPA, CYANEX 272, and CYANEX 301, to the surface of superparamagnetic magnetite (Fe3O4) nanoparticles. The synthesized nanoparticles were coated with oleic acid, first by a chemisorption mechanism and later by the respective extractant via physical adsorption. The obtained core–shell functionalized magnetite nanoparticle composites were characterized by dynamic light scattering, scanning electron microscopy, transmission electron microscopy, thermogravimetry, infrared absorption and vibrating sample magnetometry. All the prepared nanoparticles exhibited a high saturation magnetization capacity that varied between 72 and 46 emu g?1 and decreased as the magnetite nanoparticle was coated with oleic acid and functionalized. The scope of this study also included adsorption tests for lanthanum, cerium, praseodymium, and neodymium and the corresponding analysis of their results. Sorption tests indicated that the functionalized nanoparticles were able to extract the four studied lanthanide metal ions, although the best extraction performance was observed when the sorbent was functionalized with CYANEX 272, which resulted in a loading capacity of approximately 12–14 mgLa/gMNP. The magnetization of the synthesized nanoparticles was verified during the separation of the lanthanide-loaded sorbent from the raffinate by using a conventional magnet.  相似文献   

16.
S.W. Ko 《Materials Letters》2009,63(11):861-863
Polymer coated nano-sized magnetite (Fe3O4) particles with multiwalled carbon nanotube (MWNT) nanohybrid were prepared by four step procedures in this study. Initially, magnetic particles were synthesized by a co-precipitation method with ammonium hydroxide and oleic acid, and then the produced particles were coated with polyacrylamide (PAAm). Finally PAAm coated magnetite particles (Mag-PAAm) were physically adsorbed onto multiwalled carbon nanotubes (MWNT) under ultrasonication. Transmission electron microscopy (TEM) was used to investigate the formation of Mag-PAAm-MW nanohybrids nanostructure, confirming that prepared Mag-PAAM particles were well adsorbed onto the surfaces of MWNT. In addition, MR characteristics of PAAm coated magnetite particles with MWNT (Mag-PAAm-MW) nanohybrids were investigated under six different external magnetic field strengths via a rotational rheometer, exhibiting typical MR behavior of yield stress and shear stress.  相似文献   

17.
Magnetite nanoparticles were synthesized via the chemical co-precipitation method using ammonium hydroxide as the precipitating agent. The size of the magnetite nanoparticles was carefully controlled by varying the reaction temperature and through the surface modification. Herein, the hexanoic acid and oleic acid were introduced as the coating agents during the initial crystallization phase of the magnetite. Their structure and morphology were characterized by the Fourier transform infrared spectroscopy (FTIR), the X-ray diffraction (XRD) and the field-emission scanning electron microscopy (FE-SEM). Moreover, the electrical and magnetic properties were studied by using a conductivity meter and a vibrating sample magnetometer (VSM), respectively. Both of the bare magnetite and the coated magnetite were of the cubic spinel structure and the spherical-shaped morphology. The reaction temperature and the surface modification critically affected the particle size, the electrical conductivity, and the magnetic properties of these particles. The particle size of the magnetite was increased through the surface modification and reaction temperature. In this study, the particle size of the magnetite nanoparticles was successfully controlled to be in the range of 10–40 nm, suitable for various biomedical applications. The electrical conductivity of the smallest particle size was 1.3 × 10?3 S/cm, within the semi-conductive materials range, which was higher than that of the largest particle by about 5 times. All of the magnetite nanoparticles showed the superparamagnetic behavior with high saturation magnetization. Furthermore, the highest magnetization was 58.72 emu/g obtained from the hexanoic acid coated magnetite nanoparticles.  相似文献   

18.
The magnetite (Fe3O4) nanoparticles were prepared by the co-precipitation of ferrous and ferric salts with NH4OH, and then modified with 3-aminopropyltriethoxysilane (APTES) by silanization reaction and subsequent reaction with glutaraldehyde (GA) to obtain functional groups on their surface. The influence of different terminated groups on protein binding was studied with bare and modified magnetite nanoparticles. Amine terminated magnetite nanoparticles were shown the highest binding ability for immobilization process compared to Fe3O4 NPs and GA bonded NPs. This binding ability was shown by using sodium dodecyl polyacrylamide gel electrophoresis technique (SDS-PAGE). Albumin attached magnetite nanoparticles were also examined by Scanning Electron Microscopy (SEM).  相似文献   

19.
The study presents the preparation of the new magnetic nanocomposite based on PLGA and magnetite. The PLGA used to obtain the magnetic nanocomposites was synthesized by the copolymerization of lactic acid with glycolic acid, in the presence of tin octanoate [Sn(Oct)2] as catalyst, by polycondensation procedure. Magnetite was obtained by co-precipitation from aqueous salt solutions FeCl2/FeCl3. The particles size of magnetite was 420 nm, and the saturation magnetization 62.78 emu/g, while the PLGA/magnetite nanocomposite size was 864 nm and the saturation magnetization 39.44 emu/g. The magnetic nanocomposites were characterized by FT-IR, DLS technique, SEM, VSM and simultaneous thermal analyses (TG–FTIR–MS). The polymer matrix PLGA acts as a shell and carrier for the active component, while magnetite is the component which makes targeting possible by external magnetic field manipulation. Based on the gases resulted by thermal degradation of PLGA copolymer, using the simultaneous analysis TG–FTIR–MS, a possible degradation mechanism was proposed.  相似文献   

20.
Magnetite (Fe3O4) nanoparticles are synthesized continuously in supercritical methanol (scMeOH) without using reducing agents at 30 MPa, 400 °C and a residence time of 38 s. XRD analysis reveals that particles synthesized in scMeOH retain magnetite crystalline structure while particles synthesized in supercritical water retain hematite (α-Fe2O3) crystalline structure. The scMeOH acts both as a reaction medium and a reducing agent. The magnetite nanoparticles are spherical in shape with an average diameter of 21 ± 2 nm, as measured using SEM and TEM. The saturation magnetization of the magnetite nanoparticle is 76.6 emu/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号