首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Mesoporous carbon CMK-3 was synthesized by using SBA-15 silica mesoporous as hard template and characterized through nitrogen adsorption/desorption and low angle X-ray diffraction.As-prepared material with large pores and high surface area was used to remove Orange G dye from aqueous solution.Adsorption experiments were carried out as batch studies at variety of contact times,pH,initial dye concentrations,temperatures and salt concentrations.Langmuir and Freundlich isotherm models were employed to simulate the equilibrium data of anionic dye.It was found that the equilibrium data were well represented by the Langmuir isotherm,yielding maximum monolayer adsorption capacity of 189 mg/g.Experimental data were analyzed using pseudo-first order and pseudo-second order kinetic models and obtained results indicated that kinetics followed a pseudo-second order equation.  相似文献   

2.
This study represents new material based on chitosan modified by zeolite A as adsorbent for anionic dye, using Bezactive Orange 16 as a model compound. Interactions between dye and chitosan/zeolite A film at initial concentrations and pH dye solution was investigated. In order to determine kinetics and the mechanism of adsorption four kinetic models were used. The results showed that the adsorption of Bezactive Orange 16 dye onto chitosan/zeolite A can be best described by pseudo-second order model. According to the Langmuir model, the maximum adsorption capacity reached 305.8 mg/g. The films could be potentially used as absorbents for anionic dye removal in wastewater treatment process.  相似文献   

3.
The reuse of dried activated sludge for adsorption of reactive dye   总被引:3,自引:0,他引:3  
Adsorption processes are alternative effective methods for removal of textile dyes from aqueous solutions. The adsorption ability of adsorbent affects by physico-chemical environment for this reason in this paper effect of initial pH, dye concentrations, temperature and dye hydrolyzation were determined in a batch system for removal of reactive dye by dried activated sludge. The Langmuir isotherm model was well described of adsorption reactive dye and maximum monolayer adsorption capacity (at pH 2) of activated sludge was determined as 116, 93 and 71mgg(-1) for 20 degrees , 35 degrees and 50 degrees C, respectively. Initial pH 2, 20 degrees C and 30min contact time are suitable for removal of reactive dyes from aqueous solutions. Activated sludge was characterized by FT-IR analysis and results showed that active sludge has different functional groups and functional groups of activated sludge are able to react with dye molecules in aqueous solution. The pseudo first-order, second-order and intraparticle diffusion kinetics were used to describe the kinetic data. The pseudo second-order kinetic model was fit well over the range of contact times and also an intra particle diffusion kinetic model was fit well but in the first 30min. The dye hydrolyzation was affected adsorption capacity of biomass and adsorption capacity of biomass decreased with dye hydrolyzation from 74 to 38mgg(-1).  相似文献   

4.
Nanoparticles of TiO2 were synthesized and characterized by XRD, BET, TG/DTA and TEM measurements. The commercial azo dye Reactive Red 195 (RR195) was selected as a model dye in order to examine the adsorption capacity of TiO2 at room temperature, under dark conditions. It was demonstrated that RR195 could be efficiently adsorbed in aqueous suspension of TiO2. A study on the effects of various parameters like initial pH, concentration of dye and concentration of adsorbent has been carried out in order to find optimum adsorption conditions. The optimum pH of sorption was 3. Substantial reduction of COD, besides removal of colour, was also achieved. The experimental data were analyzed by the Langmuir and Freundlich adsorption models. Equilibrium data fitted very well with the Langmuir model signifying the energetic homogeneity of TiO2 surface adsorption sites. At the temperature of 30 °C, the maximum monolayer adsorption capacity obtained from the Langmuir model is 87 mg/g (pH 3.0). Kinetic studies were carried out and showed a rapid sorption of dye in the first 30 min while equilibrium was reached at 1 h. Three kinetic adsorption models were used to describe the kinetics data, the pseudo-first-order model, the pseudo-second-order model and the intraparticle diffusion model. The sorption kinetics of dye was best described by the pseudo-second-order kinetic model.  相似文献   

5.
In this study dried biomass of Baker's yeast, Saccharomyces cerevisiae, is used as a sorbent for Astrazone Blue basic dye aqueous solution. Factors affecting the adsorption process: dye concentration, contact time, temperature and pH were investigated. The equilibrium concentration and the adsorption capacity at equilibrium were determined using three different sorption models namely: Langmuir, Freundlich and Temkin isotherms. It was found that increasing temperature and pH result in higher dye loadings per unit weight of the sorbent. The results gained from this study were described by Langmuir isotherm model better than Freundlich and Temkin isotherm models. The calculated heat of adsorption of the dye-yeast system indicates that the bio-sorption process is taking place by chemical adsorption and has an endothermic nature. The maximum adsorption capacity at 30 degrees C and pH 7 was calculated as 70 mg/g for dried biomass of Baker's yeast compared to 18.5mg/g for commercial granular activated carbon, indicating that dried biomass of Baker's yeast can be considered as a good sorbent material for Astrazone Blue solution.  相似文献   

6.
In this paper, the surface modification of zinc oxide nanoparticle (ZON) by amine functionalization was studied to prepare high capacity adsorbent. Dye removal ability of amine-functionalized zinc oxide nanoparticle (AFZON) and zinc oxide nanoparticle (ZON) was also investigated. The physical characteristics of AFZON were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acid Blue 25 (AB25), Direct Red 23 (DR23) and Direct Red 31 (DR31) were used as model compounds. The effect of operational parameters such as dye concentration, adsorbent dosage, pH and salt on dye removal was evaluated. The isotherm and kinetic of dye adsorption were studied. The maximum dye adsorption capacity (Q0) was 20 mg/g AB25, 12 mg/g DR23 and 15 mg/g DR31 for ZON and 1250 mg/g AB25, 1000 mg/g DR23 and 1429 mg/g DR31 for AFZON. It was found that dye adsorption followed Langmuir isotherm. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% AB25, 86% for DR23 and 90% for DR31 were achieved in aqueous solution at pH 12. Based on the data of the present investigation, it can be concluded that the AFZON being an adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored aqueous solutions.  相似文献   

7.
The adsorption of heavy metal ions (Cr3+, Pb2+ and Cd2+) by metal oxide monoliths (Fe2O3 and Fe2O3/SiO2) synthesized via nanocasting method using SiO2 monoliths as a template was studied. The adsorption experiments were performed in different batches by varying key parameters and the equilibrium between the adsorbents and metal ion solution was achieved in ~120?min at pH 6. The maximum monolayer adsorption efficiency for Pb (II), Cr (III) and Cd (II) ions was 850, 770 and 690?mg/g, respectively, for the magnetic Fe2O3/SiO2 monoliths. The experimental data show best fit with the pseudo-second-order reaction type. The adsorption data found to be well fitted using Freundlich and Langmuir adsorption isotherms. The adsorption process was exothermic and spontaneous in nature, as confirmed by the thermodynamic parameters. Furthermore, the photocatalytic degradation of an industrial dye e.g., remazol black XP (RxP) by Fe2O3/SiO2 monoliths was done from wastewater and the photocatalytic efficiency of the monoliths (using different amount) has been evaluated under visible light source which gives the best results (97.8%) for the monolith concentration 0.10?g/L.  相似文献   

8.
Batch sorption experiments were carried out using a novel adsorbent, guava leaf powder (GLP), for the removal of methylene blue (MB) from aqueous solutions. Potential of GLP for adsorption of MB from aqueous solution was found to be excellent. Effects of process parameters pH, adsorbent dosage, concentration, particle size and temperature were studied. Temperature-concentration interaction effect on dye uptake was studied and a quadratic model was proposed to predict dye uptake in terms of concentration, time and temperature. The model conforms closely to the experimental data. The model was used to find optimum temperature and concentration that result in maximum dye uptake. Langmuir model represent the experimental data well. Maximum dye uptake was found to be 295mg/g, indicating that GLP can be used as an excellent low-cost adsorbent. Pseudo-first-order, pseudo-second order and intraparticle diffusion models were tested. From experimental data it was found that adsorption of MB onto GLP follow pseudo second order kinetics. External diffusion and intraparticle diffusion play roles in adsorption process. Free energy of adsorption (DeltaG degrees ), enthalpy change (DeltaH degrees ) and entropy change (DeltaS degrees ) were calculated to predict the nature of adsorption. Adsorption in packed bed was also evaluated.  相似文献   

9.
This study investigates the adsorption of Congo red dye on walnut shell powder based activated carbon in batch process (WNAA). Walnut shell powder was carbonized by treating with phosphoric acid (H3PO4), and the adsorbent was characterized using Fourier Transform-Infrared spectrophotometer (FT-IR), Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), and pH point of zero charge (pHpzc), respectively. Operational parameters such as contact time, initial dye concentration, and pH were investigated using batch-adsorption techniques. The adsorption uptake was found to increase with increase in initial dye concentration and contact time. The optimum CR dye uptake was observed at pH 3.12 corresponding to 94.53% removal. Pseudo-first-order, pseudo-second-order, Elovich, and Intraparticle diffusion kinetic models were used to test the adsorption data. The pseudo-second order exhibited the best fit out of the four kinetic models used. Equilibrium data were fitted to the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models. Langmuir model fitted the adsorption data most with maximum monolayer coverage of 40?mg/g. Thermodynamic parameters such as Gibbs free energy, enthalpy, entropy, and the activation energy were determined. It was found that Congo red dye adsorption was spontaneous and endothermic. 0.02M Hydrochloric acid was used to regenerate the adsorbent prepared, and the regenerated adsorbent was used for dye adsorption. Congo red dye adsorption capacity ranged from 90% to 93% at three consecutive times. This study has shown that walnut shell is a good adsorbent in the treatment of Congo red dye from aqueous solutions.  相似文献   

10.
Preparation of crosslinked copolymer beads based on glycidyl methacrylate (GMA), 2-hydroxyethyl methacrylate (HEMA), and divinyl benzene for the use of heavy metal adsorption has been investigated. In our study, a series of porous copolymer beads were synthesized by suspension polymerization in the presence of porogens, 1-dodecanol, toluene, and heptane at different dilutions. The effect of the porogens on the surface appearance and the porous structure of copolymer beads was studied by scanning electron microscopy and BET method. Diethylene triamine chelating copolymers were obtained through a reaction between amine groups of diethylene triamine and epoxide pendant groups of GMA. Adsorption isotherm and quantitative analysis for adsorption capacity involving copper, chromium, manganese, cadmium, iron, and zinc ions were investigated using atomic absorption spectrophotometer. The adsorption was a function of types of metal ions, adsorption time, and solution properties including pH and metal concentration. Adsorption equilibrium was achieved in approximately 50 min with a maximum adsorption capacity at pH 5.0. The Langmuir isotherm was found to be well fitted on the adsorption behavior. The maximum metal adsorption capacities in single ion solution in mole basis were in the order Cu(II) > Cr(VI) > Mn(II) > Zn(II) > Cd (II) > Fe(II). It was found that introducing porogen in the polymerization mixture produced the copolymer beads with better adsorption capacity. The maximum Cu(II) adsorption capacity of chelating poly(GMA-co-HEMA) beads were 1.35 mmol/g (85.79 mg/g) measured from the beads prepared in the presence of 1-heptane with 50% dilution. Consecutive adsorption–desorption experiments showed that crosslinked poly(GMA-co-HEMA) micro-beads can be reused almost without any change in the adsorption capacity.  相似文献   

11.
Waste metal hydroxide sludge as adsorbent for a reactive dye   总被引:1,自引:0,他引:1  
An industrial waste sludge mainly composed by metal hydroxides was used as a low-cost adsorbent for removing a reactive textile dye (Remazol Brilliant Blue) in solution. Characterization of this waste material included chemical composition, pH(ZPC) determination, particle size distribution, physical textural properties and metals mobility under different pH conditions. Dye adsorption equilibrium isotherms were determined at 25 and 35 degrees C and pH of 4, 7 and 10 revealing reasonably fits to Langmuir and Freundlich models. At 25 degrees C and pH 7, Langmuir fit indicates a maximum adsorption capacity of 91.0mg/g. An adsorptive ion-exchange mechanism was identified from desorption studies. Batch kinetic experiments were also conducted at different initial dye concentration, temperature, adsorbent dosage and pH. A pseudo-second-order model showed good agreement with experimental data. LDF approximation model was used to estimate homogeneous solid diffusion coefficients and the effective pore diffusivities. Additionally, a simulated real effluent containing the selected dye, salts and dyeing auxiliary chemicals, was also used in equilibrium and kinetic experiments and the adsorption performance was compared with aqueous dye solutions.  相似文献   

12.
The adsorption of reactive dye (Reactive Red 189) from aqueous solutions on cross-linked chitosan beads was studied in a batch system. The equilibrium isotherms at different particle sizes (2.3-2.5, 2.5-2.7 and 3.5-3.8mm) and the kinetics of adsorption with respect to the initial dye concentration (4320, 5760 and 7286 g/m(3)), temperature (30, 40 and 50 degrees C), pH (1.0, 3.0, 6.0 and 9.0), and cross-linking ratio (cross-linking agent/chitosan weight ratio: 0.2, 0.5, 0.7 and 1.0) were investigated. Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms and isotherm constants. Equilibrium data fitted very well to the Langmuir model in the entire saturation concentration range (0-1800 g/m(3)). The maximum monolayer adsorption capacities obtained from the Langmuir model are very large, which are 1936, 1686 and 1642 g/kg for small, mediumand large particle sizes, respectively, at pH 3.0, 30 degrees C, and the cross-linking ratio of 0.2. The pseudo first- and second-order kinetic models were used to describe the kinetic data, and the rate constants were evaluated. The experimental data fitted well to the second-order kinetic model, which indicates that the chemical sorption is the rate-limiting step, instead of mass transfer. The initial dye concentration and the solution pH both significantly affect the adsorption capacity, but the temperature and the cross-linking ratio are relatively minor factors. An increase in initial dye concentration results in the increase of adsorption capacity, which also increases with decreasing pH. The activation energy is 43.0 kJ/mol for the adsorption of the dye on the cross-linked chitosan beads at pH 3.0 and initial dye concentration 3768 g/m(3).  相似文献   

13.
《工程(英文)》2017,3(3):409-415
Natural adsorbents such as banana pseudostem can play a vital role in the removal of heavy metal elements from wastewater. Major water resources and chemical industries have been encountering difficulties in removing heavy metal elements using available conventional methods. This work demonstrates the potential to treat various effluents utilizing natural materials. A characterization of banana pseudostem powder was performed using environmental scanning electron microscopy (ESEM) and Fourier-transform infrared (FTIR) spectroscopy before and after the adsorption of lead(II). Experiments were carried out using a batch process for the removal of lead(II) from an aqueous solution. The effects of the adsorption kinetics were studied by altering various parameters such as initial pH, adsorbent dosage, initial lead ion concentration, and contact time. The results show that the point of zero charge (PZC) for the banana pseudostem powder was achieved at a pH of 5.5. The experimental data were analyzed using isotherm and kinetic models. The adsorption of lead(II) onto banana pseudostem powder was fitted using the Langmuir adsorption isotherm. The adsorption capacity was found to be 34.21 mg·g–1, and the pseudo second-order kinetic model showed the best fit. The optimum conditions were found using response surface methodology. The maximum removal was found to be 89%.  相似文献   

14.
The adsorption of Direct Red 80 (DR 80) dye from aqueous solution on almond shells as an eco-friendly and low-cost adsorbent was studied. The effect of shell type (internal, external and mixture shells), pH and initial dye concentration were considered to evaluate the sorption capacity of almond shell adsorbent. The mixture type of almond shell showed to be more effective. The adsorption studies revealed that the mixture type of almond shells remove about 97% of the DR 80 dye from aqueous phase after 1h of the adsorption process in a batch system. Although, pH changes did not appreciably affect the adsorption process but the maximum adsorption capacity of different types of almond shells (20.5, 16.96 and 16.4 mg/g for mixture, external and internal shells) were obtained at pH 2. However, in order to have a better control on the experimental conditions, pH 6 was selected for conducting all adsorption experiments. Initial dye concentration was varied from 50 to 150 mg/L. Higher concentrations of dye in aqueous solution reduced DR 80 dye adsorption efficiency of almond shells. Equilibrium data were attempted by various adsorption isotherms including Langmuir, Freundlich and Brunauer-Emmett-Teller (BET) models. It was found that the adsorption process by mixture type of almond shells follows the Langmuir non-linear isotherm. Furthermore, the experimental data by internal and external almond shells could be well described by the BET and Freundlich isotherm models, respectively. The pseudo-second-order kinetics provides the best correlation of the experimental data.  相似文献   

15.
Dye adsorption on unburned carbon: kinetics and equilibrium   总被引:2,自引:0,他引:2  
Unburned carbon in fly ash is an important by-product from coal combustion. In this investigation, unburned carbon has been separated from fly ash and been employed as a low cost adsorbent for a basic dye adsorption (Rhodamine B) in aqueous solution. Adsorption isotherm and kinetics of adsorption have been investigated using batch experiments. It is found that dye adsorption capacity depends on initial concentration, pH of solution, and temperature. The adsorption isotherm can be described by Langmuir model and the adsorption capacity of Rhodamine B at 30, 40, and 50 degrees C can reach 9.7 x 10(-5), 1.14 x 10(-4), and 1.5 x 10(-4)mol g(-1), respectively. The pseudo first- and second-order kinetic models have been employed to fit the dynamic adsorption. It is found that the dynamic adsorption follows the pseudo second-order model. Thermodynamic calculations indicate that the adsorption is endothermic reaction with DeltaH degrees at 25 kJ mol(-1).  相似文献   

16.
In the present study adsorption of rhodamine-B from aqueous solution on formaldehyde treated parthenium biomass (WC) and phosphoric acid treated parthenium carbon (PWC) was studied. Aqueous solutions of various concentrations (50-500 mg/l) were shaken with certain amount of adsorbent to determine the adsorption capacity of rhodamine-B on WC and PWC. The effectiveness of formaldehyde treated parthenium biomass (WC) and phosphoric acid treated parthenium carbon (PWC) in adsorbing rhodamine-B from aqueous solution has been studied as a function of agitation time, adsorbent dose, initial dye concentration and pH. The adsorption capacities of the studied adsorbents were in the order PWC>WC. Initial pH had negligible effect on the adsorption capacity. Maximum dye was sequestered from the solution within 60min after the start of every experiment. After that, the concentration of rhodamine-B in the liquid-phase remained constant. The adsorption of rhodamine-B onto PWC and WC followed second-order kinetic model. Adsorption data were modeled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity Q(0) was 59.17 mg/g at initial pH 7.0 for the particle size 0.3-1.0mm for phosphoric acid treated parthenium carbon (PWC). The FT-IR spectra of the adsorbents were recorded to explore number and position of functional groups available for the binding of dye cation onto studied adsorbents. SEMs of the adsorbents were recorded to explore the morphology of the studied adsorbents.  相似文献   

17.
The free floating macrophyte Lemna minor L. was harvested locally. Untreated, acid pretreated (H2SO4), alkali pretreated (NaOH) biomass were used for adsorption of copper, cadmium and nickel ions from aqueous solutions. The effect of initial pH, initial metal concentration and multi metal interaction were carried out in a batch system. The equilibrium adsorption was reached within 40-60 min. The Langmuir and Freundlich models were used for describing of adsorption isotherm data. The maximum adsorption capacities of alkali pretreated biomass were determined as 83, 69 and 59 mg g(-1) for the Cd(II), Cu(II) and Ni(II) ions, respectively. The pseudo first- and second-order intraparticle diffusion models were used to describe the adsorption kinetics. The experimental data fitted to pseudo second-order kinetic. Adsorption capacity decreased with acid pretreatment; however alkali pretreatment was not affected significantly adsorption capacity and adsorption capacity a little increased according to native biomass. The FT-IR results of Lemna biomass showed that biomass has different functional groups and these functional groups are able to react with metal ions in aqueous solution.  相似文献   

18.
Adsorption of Crystal violet, a basic dye onto phosphoric and sulphuric acid activated carbons (PAAC and SAAC), prepared from male flowers coconut tree has been investigated. Equilibrium data were successfully applied to study the kinetics and mechanism of adsorption of dye onto both the carbons. The kinetics of adsorption was found to be pseudo second order with regard to intraparticle diffusion. The pseudo second order is further supported by the Elovich model, which in turn intensifies the fact of chemisorption of dye onto both the carbons. Quantitative removal of dye at higher initial pH of dye solution reveals the basic nature of the Crystal violet and acidic nature of the activated carbons. Influence of temperature on the removal of dye from aqueous solution shows the feasibility of adsorption and its endothermic nature. Mass transfer studies were also carried out. The adsorption capacities of both the carbons were found to be 60.42 and 85.84 mg/g for PAAC and SAAC, respectively. Langmuir's isotherm data were used to design single-stage batch adsorption model.  相似文献   

19.
Widely used synthetic dyes are one of the main pollutants that contaminate water environments seriously. From the environmental perspective, efficient adsorption of these wastes such as Congo red (CR) is of great importance, and numbers of adsorbents including inorganic materials have been developed. Herein, a lanthanide tetraboride nanocrystal powder CeB4 with an average particle size of 50 nm synthesized for the first time via inorganic molten salt synthesis route using cerium fluoride (CeF3) and sodium borohydride (NaBH4) as the cerium and boron precursors in argon atmosphere exhibits good performance for the adsorption of CR. Essential effluence factors, such as initial pH value, contacting time, and initial concentration, were experimentally evaluated. The adsorption was pH dependent, and the kinetic data follow the pseudo–second–order kinetic model. It was also found that the equilibrium adsorption data could be represented by Langmuir and Freundlich isotherm models, with a maximum capacity of 491.8 mg/g. On the basis of the adsorption–desorption experiments, CeB4 exhibits good reusability.  相似文献   

20.
《Advanced Powder Technology》2020,31(5):2061-2071
Maleate-alumoxane nanoparticles (Mal-A) were synthesized from boehmite and applied for adsorption of an azo dye (Reactive Yellow 84) from aqueous solution. Its adsorption capacity was compared with three types of carboxylate alumoxane nanoparticles synthesized from boehmite including salicylate alumoxane (Sal-A), para-aminobenzoate alumoxane (Pab-A) and fumarate alumoxane (Fum-A). The characterizations of prepared materials were analyzed using FTIR, SEM, X-ray diffraction and BET measurements. Among utilized alumoxanes at natural pH, the adsorption capacity of Mal-A was 45, 67, 116 and 215% higher than that of Fum-A, Boehmite, Pab-A, Sal-A nanoparticles, respectively. Response surface methodology (RSM) using Box-Behnken design of experiment was employed to investigate the influence of pH, initial concentration of dye and adsorbent dosage on dye removal efficiency of Mal-A. Box-cox transformation was chosen to improve model adequately and a good prediction (R2: 0.998) was achieved. Under optimum condition, i.e., pH: 4.3, dye concentration: 151.5 mg/L and adsorbent dosage: 1.2 g/L, the adsorption capacity and dye removal efficiency were obtained 130.6 mg/g and 99.2%, respectively. The kinetics and equilibrium data were perfectly represented with linear pseudo-second-order and linear Langmuir isotherm models, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号