首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many engineering applications,it is important to determine both effective rock properties and the rock behavior which are representative for the problem’s in situ conditions.For this purpose,rock samples are usually extracted from the ground and brought to the laboratory to perform laboratory experiments such as consolidated undrained(CU)triaxial tests.For low permeable geomaterials such as clay shales,core extraction,handling,storage,and specimen preparation can lead to a reduction in the degree of saturation and the effective stress state in the specimen prior to testing remains uncertain.Related changes in structure and the effect of capillary pressure can alter the properties of the specimen and affect the reliability of the test results.A careful testing procedure including back-saturation,consolidation and adequate shearing of the specimen,however,can overcome these issues.Although substantial effort has been devoted during the past decades to the establishment of a testing procedure for low permeable geomaterials,no consistent protocol can be found.With a special focus on CU tests on Opalinus Clay,this study gives a review of the theoretical concepts necessary for planning and validating the results during the individual testing stages(saturation,consolidation,and shearing).The discussed tests protocol is further applied to a series of specimens of Opalinus Clay to illustrate its applicability and highlight the key aspects.  相似文献   

2.
The mechanical behaviour of weak mudstone (Opalinus Clay) at low stresses   总被引:3,自引:0,他引:3  
Over the last 10 years argillaceous rocks (mudrocks), such as the Jurassic claystone Opalinus Clay, have gained acceptance as a potential host formation for geological disposal of nuclear waste. Observations from tunnels in Opalinus Clay at the Mont Terri rock laboratory, Switzerland, suggest that the excavation-induced response is not linear-elastic. The micro-structure of the Opalinus Clay has been identified as a source for this response. It has been demonstrated that diagenetic processes over the last 180 Ma have been responsible for the formation of strong diagenetic bonds locking latent strain energy into the micro-structure of Opalinus Clay. A conceptual model of the micro-structure, including the effects of diagenetic processes, has been developed as a framework to interpret the mechanical behaviour of the Opalinus Clay. Samples recovered at Mont Terri rock laboratory have been subjected to processes that have resulted in bond breakage and the release of locked-in latent strain energy. This tends to reduce the strength and deformation properties of samples and induces low stiffness non-linearity of the stress–strain curve at low stress levels. Numerical modelling of the sampling stress-path at Mont Terri rock laboratory shows that unloading was the dominant factor resulting in this response. As a result, samples can shed light on the unloading response of the rockmass to excavation. This non-linear behaviour has been quantified by means of routine laboratory compressive tests.  相似文献   

3.
Repositories for deep geological disposal of radioactive waste rely on multi-barrier systems to isolate waste from the biosphere.A multi-barrier system typically comprises the natural geological barrier provided by the repository host rock e in our case the Opalinus Clay e and an engineered barrier system(EBS).The Swiss repository concept for spent fuel and vitrified high-level waste(HLW)consists of waste canisters,which are emplaced horizontally in the middle of an emplacement gallery and are separated from the gallery wall by granular backfill material(GBM).We describe here a selection of five in-situ experiments where characteristic hydro-mechanical(HM)and thermo-hydro-mechanical(THM)processes have been observed.The first example is a coupled HM and mine-by test where the evolution of the excavation damaged zone(EDZ)was monitored around a gallery in the Opalinus Clay(ED-B experiment).Measurements of pore-water pressures and convergences due to stress redistribution during excavation highlighted the HM behaviour.The same measurements were subsequently carried out in a heater test(HE-D)where we were able to characterise the Opalinus Clay in terms of its THM behaviour.These yielded detailed data to better understand the THM behaviours of the granular backfill and the natural host rock.For a presentation of the Swiss concept for HLW storage,we designed three demonstration experiments that were subsequently implemented in the Mont Terri rock laboratory:(1)the engineered barrier(EB)experiment,(2)the in-situ heater test on key-THM processes and parameters(HE-E)experiment,and(3)the full-scale emplacement(FE)experiment.The first demonstration experiment has been dismantled,but the last two ones are on-going.  相似文献   

4.
The high degree of scientific cross-fertilisation possible between the three geo-engineering disciplines soil mechanics, rock mechanics and engineering geology, is demonstrated by means of a micro-mechanical model of the Opalinus Clay. After a brief review of Terzaghi’s effective stress principle and the importance of micro-mechanical models in general, a conceptual study of a micro-mechanical model of a claystone is presented in some detail. The model is based on the Particle Flow Code (PFC) developed by Itasca Corp. It introduces into the model the pertinent composition and structure of the Opalinus Claystone established in the local engineering geology of Switzerland and SW Germany. This includes elongated clay platelets, various layers of densified water around the platelets, free water in the pores and a specific texture of the platelets after consolidation. The model is numerically subjected to a series of loading stages. It is shown that the micro-mechanical model reproduces a number of features which have been known for a long time in soil and rock mechanics but which are often intractable in conventional generic models. The features include non-linear stress–strain curves with pre-failure damage and post-failure strain softening, a non-linear increase of the particle contacts with loading, distinct clustering of deformations, clustering of micro cracks leading to the development of shear bands and hysteresis in cyclic loading. It is concluded that micro-mechanical models are promising tools for further development of our understanding of the mechanical behaviour of geological materials. They offer an excellent opportunity for scientific co-operation between engineering geologists and soil and rock mechanics engineers.  相似文献   

5.
In China, weathered mudstone geogrid-reinforced coarse-grained soil is used extensively for road embankments. However, the microstructure and disintegration process of weathered mudstone remain unclear. Furthermore, few studies have investigated the shear behaviour of this kind of geogrid-reinforced fill through large-scale triaxial tests against grain size effects. To bridge this gap, this study reports results from large scale consolidated undrained (CU) and consolidated drained (CD) triaxial tests as well as scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and disintegration tests on weathered mudstone geogrid-reinforced coarse-grained soil. EDX spectrograms and SEM images show that coarse grains disintegrate rapidly mainly owing to the high clay mineral content and loose microstructure. Therefore, a suitable disintegration time (∼15 days) is recommended for embankment sits. The shear behaviour of this geogrid-reinforced fill is investigated in detail through large-scale triaxial tests. The shear deformation tends toward strain hardening behaviour with an increase in the number of geogrid layers and the confining pressure. Geogrids significantly improve the apparent cohesive strength of coarse-grained soil. The pore water pressure is found to develop rapidly in the 0%–4% axial strain phase but dissipate slowly in the 4%–12% axial strain phase. During shear, the pore pressure coefficient A values of 0.2–0.4 are indicative of the partial saturation of specimens. Consequently, pore water pressure development is mainly attributed to the movement and rearrangement of coarse particles in coarse-grained soil. Experimental data show that the geogrid-reinforcement coefficients increase with the number of geogrid layers, and a 20-cm separation between geogrid layers is recommended for embankment construction sites. The number of geogrid layers influences the geogrid–soil interface’s mobilization and the slip surface type. Test results revealed three types of slip surfaces related to the failure shapes of specimens. Then, based on CU experimental data, the parameters of the Duncan–Chang constitutive model are discussed.  相似文献   

6.
The Opalinus Clay formation is currently being investigated as a potential host rock for the deep geological disposal of radioactive waste in Switzerland. Recently, a test tunnel was excavated at the Mont Terri underground rock laboratory (URL) as part of a long-term research project (“Full-scale Emplacement (FE) experiment”) aimed at studying the thermo-hydro-mechanical (THM) effects induced by the presence of an underground repository. The objective of this paper is twofold. Firstly, the results of the rock mass monitoring programme carried out during the construction of the 3 m diameter, 50 m long FE tunnel are presented, with particular focus on the short-term deformation response. The deformation measurements, including geodetic monitoring of tunnel wall displacements, radial extensometers and longitudinal inclinometers, indicate a strong directionality in the excavation response. Secondly, the deformational behaviour observed in the field is analyzed using a hybrid finite-discrete element (FDEM) analysis to obtain further insights into the formation of the excavation damaged zone (EDZ). The FDEM simulation using the Y-Geo code is calibrated based on the average short-term response observed in the field. Deformation and strength anisotropy are captured using a transversely isotropic, linear elastic constitutive law and cohesive elements with orientation-dependent strength parameters. Overall, a good agreement is obtained between convergences measured in the field and numerical results. The simulated EDZ formation process highlights the importance of bedding planes in controlling the failure mechanisms around the underground opening. Specifically, failure initiates due to shearing of bedding planes critically oriented with respect to the compressive circumferential stress induced around the tunnel. Slippage-induced rock mass deconfinement then promotes extensional fracturing in the direction perpendicular to the bedding orientation. The simulated fracture pattern is consistent with previous experimental evidence from the Mont Terri URL.  相似文献   

7.
超深三轴水泥土搅拌桩技术及在深基坑工程中的应用   总被引:1,自引:0,他引:1  
随着沿海软土地区深基坑工程的发展,深度超过50m的超深三轴水泥土搅拌桩技术成为深层承压水控制的有效措施。通过工程实例介绍了超深三轴水泥土搅拌桩技术及其在深基坑工程中的应用情况。阐述了超深三轴水泥土搅拌桩的施工工艺、施工要点和质量控制措施,结合上海和天津地区的超深三轴搅拌桩的工程实例进行了说明,验证了超深三轴水泥土搅拌桩技术的可行性和可靠性。  相似文献   

8.
This paper is to contribute to the understanding of the behaviour of tunnels in swelling ground. An Italian case study of a tunnel, collapsed due to swelling of a stiff clay, is taken as an example. The stress paths during excavation of elements of ground around the opening are computed in order to evidence the significant difference to that reproduced by usual swelling tests in the laboratory. An innovative triaxial testing procedure is developed and the stiff-clay tested. A numerical simulation of the swelling phenomenon induced by the excavation of the tunnel, based on the experimental results obtained, is then compared to site observations.  相似文献   

9.
针对沙溪铜矿龙王顶尾矿库工程初设土石坝建设方案,配置了3种含石量(5%、15%和30%)的筑坝土石料,开展了常围压条件下的大三轴压缩试验。试验表明,在低围压下土石料表现出明显的剪胀变形,在高围压条件下其变形以剪缩为主。随试样含石量从5%增加至30%,土石料的应力应变曲线形态相似,但强度和剪胀效应均明显增大。基于试验成果分析,构造适用于描述土石料剪缩/剪胀变形规律的塑性加载和流动方向矢量。在广义塑性本构模型框架内,建立了一个适用于土石料的弹塑性力学模型,阐述了模型参数的确定方法。将此力学模型应用于土石料的大型三轴试验模拟,发现该力学模型能较好地模拟土石料的剪缩/剪胀变形规律。  相似文献   

10.
针对三轴试验中遇到的问题,通过对影响三轴试验结果的一些因素分析,指出了试验过程中应注意的事项。  相似文献   

11.
Evidence from shallow tunnels and mines indicates that, in certain cases, deformation and failure are not confined to the vicinity of the excavation front, as is widely believed. This situation has recently been described as lateral strain propagation from a “source” to remote parts of the excavation through low-strength rocks. A similar situation is observed in deep excavations, mainly expressed by rock bursts and micro-earthquakes. We suggest that (slow) propagation or (seismic) radiation of deformation away from the excavation front can be explained on the basis of the theory of Coulomb failure stress changes, in analogy to faulting in large earthquakes: local increase of stresses due to the excavation or failure in a certain point leads to a slight increase of stresses around this point. If adjacent points are already at a critical level for failure, this slight increase triggers a laterally, domino-style propagating new failure. Yet, in contrast to earthquakes, triggered deformation in mining can, in principle, be predicted and counteracted.  相似文献   

12.
基坑开挖卸荷扰动区深度的确定是基坑设计的重要指标。现有的关于扰动区深度的确定大都采用室内试验方法,无法反映土体的原位应力状态。基于多功能孔压静力触探(CPTU)原位测试,对南京、无锡、常州3个基坑工程进行开挖前、后的原位测试,分析了开挖卸荷对锥尖阻力qt、侧壁摩阻力fs、摩阻比Rf、电阻率ρ的影响;进一步结合室内卸荷回弹试验,提出了基于原位测试的基坑开挖扰动深度确定方法。结果表明,对于粉土和粉砂地基,开挖卸荷会使锥尖阻力和侧壁摩阻力降低,且随着土体埋深增加,其影响程度逐渐减小;对摩阻比和电阻率影响则较小;基坑开挖扰动区深度为CPTU锥尖阻力qt衰减20%时对应的深度距坑底开挖面的距离。  相似文献   

13.
14.
An energy simulation of a building is a mathematical representation of its physical behaviour considering all the thermal, lighting, acoustics aspects. However, a simulation cannot precisely replicate a real construction because all the simulations are based on a number of key assumptions that affect the results accuracy. Above all, the real energy performance can be affected by the actual behaviour of the building occupants. Thus, there are great benefits to be derived from improving models that simulate the behaviour of human beings within the context of engineered complex systems. The occupant behaviour related to the building control potentialities is a very complex process that has been studied only in the last years with some focuses related to natural ventilation (window opening behaviour), space heating energy demand (in particular the adjustments in the temperature set-point) and natural light (focusing on window blinds adjustments). In this paper, a methodology is presented to model the user behaviour in the context of real energy use and applied to a case study. The methodology, based on a medium/long-term monitoring, is aimed at shifting towards a probabilistic approach for modelling the human behaviour related to the control of indoor environment. The procedure is applied at models of occupants’ interactions with windows (opening and closing behaviour). Models of occupants’ window opening behaviour were inferred based on measurements and implemented in a simulation program. Simulation results were given as probability distributions of energy consumption and indoor environmental quality depending on user behaviour.  相似文献   

15.
基坑工程引起的环境变形是其核心控制目标。目前广泛采用的被动控制技术,难以满足精细化变形控制的要求,尤其是邻近基坑的地铁隧道、高铁等所需的毫米级控制要求。针对上述问题,研究提出精细化囊体扩张实时主动控制技术。首先,开展囊体扩张技术控制土体变形的原位试验,证明囊体扩张技术可以更好地对邻近土体实现定向、定位、定量的精准“靶向”变形控制,相比袖阀管注浆变形控制更准,控制效率更高。进一步,开展囊体扩张技术控制桩基、隧道变形的原位试验,验证囊体扩张技术可准确、高效地控制地下结构变形。单孔囊体扩张引起邻近土体、桩和隧道的变形均符合高斯曲线模式,对桩基、隧道变形的控制效率高达55.6%和69.2%。相对于传统变形被动控制技术,在变形控制能力、节约造价、工期等方面均有明显优势。最后,囊体扩张实时主动控制技术成功应用于邻近基坑地铁隧道的变形控制,不仅实时有效地控制了隧道变形,还取消了基坑分区开挖,缩短了工期,降低了造价,对类似工程具有借鉴指导意义。  相似文献   

16.
 针对离心模型试验中停机开挖、排液法、微型机器人开挖3种传统方法缺点进行分析,设计研制一种新型开挖模拟装置,对土体实际卸荷过程有更准确的模拟,并应用于一组砂土地基基坑开挖离心模型试验验证了可行性。与传统方法相比,能实现非停机开挖,较准确模拟土体侧压力,原理简单、造价低。试验中布置多种类型传感器形成立体测量,试验数据与数值分析结果形成对比分析。结果表明:悬臂式支挡结构的砂土地基基坑开挖地表沉降曲线呈悬臂型;引起挡墙最大弯矩位置随开挖逐渐下移,下移速率递减;开挖土体卸荷,引起主动区土压力减小,浅层开挖对深层土压力影响很小,深层开挖时,浅层土压力的变化不明显。最后对试验中存在的问题和有待改进之处作了讨论,对后续和同类试验提供指导和参考。  相似文献   

17.
18.
针对盾构法施工过程中产生的土体损失,补偿注浆是一种应用广泛的沉降控制措施。通过模型试验及数值模拟,研究了盾构隧道开挖及补偿注浆对周围土体的扰动影响。将开挖和补偿注浆连续考虑,重点研究了既有土体损失情况下补偿注浆对地表沉降和周围土体应力的影响规律,研究结果表明,盾构隧道开挖过程中,地表沉降可以用Peck公式有效预测,且沉降最大值与土体损失率呈线性关系,隧道周围土体按照应力变化情况分为正拱区、卸荷区、塑性区。补偿注浆过程中,土体按应力变化情况分为抬升挤压区和正拱补偿区。应用小应变本构模型(HSS)进行数值模拟,模拟结果与试验规律对应良好,进一步验证了模型试验揭示的隧道开挖和补偿注浆对土体的扰动机理。  相似文献   

19.
The residual strength of rocks and rock masses is an important parameter to be constrained for analysis and design purposes in many rock engineering applications.A residual strength envelope in principal stress space is typically developed using residual strength data obtained from compression tests on many different specimens of the same rock type.In this study,we examined the potential for use of the continuous-failure-state testing concept as a means to constrain the residual strength envelope using a limited number of specimens.Specifically,cylindrical specimens of three rock types(granodiorite,diabase,and Stanstead granite) were unloaded at the residual state such that a full residual strength envelope for each individual specimen was obtained.Using a residual strength model that introduces a single new strength parameter(the residual strength index,or RSI),the results of the continuous-failurestate unloading tests were compared to conventionally obtained residual strength envelopes.Overall,the continuous-failure-state residual strength data were found to be consistent with the conventional residual strength data.However,it was identified that the primary factor limiting an accurate characterization of the residual strength for a given rock type is not the amount of data for a given specimen,but the variety of specimens available to characterize the inherent variability of the rock unit of interest.Accordingly,the use of continuous-failure-state testing for estimation of the residual strength of a rock unit is only recommended when the number of specimens available for testing is very limited(i.e.5).  相似文献   

20.
结合济南普利门超高层商业综合体项目的工程概况和周边环境条件,提出了"两墙合一"地下连续墙结合预应力锚索基坑支护方案,并分析了实施效果,指出该设计方案有效保护了基坑周边的环境,创造了良好的社会经济效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号