首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用光学显微镜、扫描电镜、X射线衍射仪和拉伸试验机等研究了不同热处理状态下Mg-12Gd-1Zn-0.5Zr合金的物相、显微组织和力学性能.结果 表明:铸态Mg-12Gd-1Zn-0.5Zr合金的组织主要由α-Mg基体、Mg5(Gd,Zn)、Mg5Gd以及Mg10ZnGd(18R-LPSO)相构成.固溶处理后,LPSO...  相似文献   

2.
采用光学显微镜、扫描电镜、透射电镜、X射线衍射仪、维氏硬度测试仪和万能力学试验机等研究了固溶和时效热处理对铸造Mg-5Y-2Nd-3Sm-0.5Zr合金组织与力学性能的影响。结果表明:铸态合金组织主要由α-Mg基体,Mg24Y5、Mg41Nd5和Mg41Sm5相组成;经固溶处理,铸态合金中粗大的第二相固溶于α-Mg基体中,时效处理后有新的纳米级第二相析出;铸造Mg-5Y-2Nd-3Sm-0.5Zr合金的最佳热处理工艺为525℃下保温10 h,然后225℃下时效处理12 h,热处理后合金具有最优良的力学性能,硬度、抗拉强度、屈服强度和伸长率分别为124.8 HV,296.9 MPa,255.4 MPa和5.78%。  相似文献   

3.
通过OM、XRD、TEM、SEM和电子拉力试验机等,研究了固溶和时效处理对Mg-8Gd-2.5Nd-0.5Zr(质量分数,%)合金显微组织和力学性能的影响。结果表明:合金铸态组织由α-Mg基体和含Mg5Gd相、Mg12Nd相的粗大枝晶组成,经过热处理后,合金中方块状颗粒相明显增多,且分布在晶界处;固溶时效态合金析出的纳米尺寸方块相可有效强化合金。时效态合金中β'析出相形态类似多个纺锤形相连接而成,相互之间的夹角呈120°,且具有周期结构。铸态、固溶态和时效态合金在不同状态下的室温拉伸强度分别为:189.3、201.4和251.1MPa。  相似文献   

4.
对挤压态和热处理态的Mg-12Gd-3Y-0.5Zr镁合金在不同温度下(包括室温)的拉伸性能进行了测试,研究了其强度随温度的变化趋势,通过对比讨论了它们的强化机制。并对该合金织构进行了观察。研究表明,两种状态的Mg-12Gd-3Y-0.5Zr镁合金都具有良好的高温力学性能,经热处理后该合金的强度略有下降,塑性大幅上升。该合金在室温下并没有像其他系列镁合金一样表现出明显的拉-压不对称性。热处理后该合金的主要强化机制为沉淀强化,添加稀土元素大大提高了它的热稳定性,这是该合金具有很高的高温强度的主要原因。  相似文献   

5.
通过OM,SEM,TEM,XRD和力学拉伸实验,研究了固溶和时效热处理对Mg-12Gd-3Y-Sm-0.5Zr(质量分数,%)合金组织和力学性能的影响。结果表明,Mg-12Gd-3Y-Sm-0.5Zr合金铸态组织由α-Mg基体和含Mg5Gd相和Mg41Sm5相的粗大枝晶组成,经过固溶和时效处理后,时效析出了Mg24Y5相,Mg5Gd相演变为Mg3Gd相,固溶时效态合金纳米尺寸的长条状相的脱溶析出可有效强化合金。合金在不同状态下的室温抗拉强度为:铸态219.4 MPa、固溶态224.0 MPa和时效态299.8 MPa。  相似文献   

6.
采用金属型铸造制备Mg-4Zn-1.5Al合金,利用SEM、TEM、XRD和力学测试研究合金在铸态、固溶和时效处理后的微观组织和力学性能变化。结果表明,采用380℃对合金进行28 h固溶处理可以获得最优的固溶效果。保温时间延长后,α-Mg的晶粒外形和第二相颗粒的含量与外形结构都会明显改变,出现晶粒生长。固溶处理后,合金的力学性能发生明显改善,显微硬度出现欠时效、峰时效与过时效等转变过程。固溶处理后,合金断口形成众多撕裂棱,同时还有部分解理面与解理台阶,表现为准解理断裂特征。  相似文献   

7.
采用X射线衍射仪、光学显微镜、扫描电镜、能谱仪和电子拉伸试验机等设备研究了Nd对Mg-13Gd-0.5Zr合金组织和力学性能的影响,结合错配度理论、位错密度的变化规律讨论了合金晶粒细化的机理,并从细晶强化和析出强化等方面阐述了合金强化机制。研究发现Mg-13Gd-0.5Zr合金的组成相主要有α-Mg、Mg<sub>5</sub>Gd,Nd的加入在合金中形成了新相Mg<sub>41</sub>Nd<sub>5</sub>,并细化了合金晶粒。Nd的加入显著提高了Mg-13Gd-0.5Zr合金的室温和高温力学性能,当Nd的添加量为2%时,合金在室温和高温下的力学性能达到最大值279(室温)、319 MPa(250 ℃),合金力学性能的提高主要归因于Mg<sub>5</sub>Gd和Mg<sub>41</sub>Nd<sub>5</sub>相的析出强化和细晶强化的双重效果。Mg-13Gd-2Nd-0.5Zr合金在不同温度下的断裂方式主要以脆性断裂为主,随着拉伸温度的升高并由脆性断裂向韧性断裂转变。  相似文献   

8.
研究了合金元素对Mg-12Gd-2Y-1.5Sm-0.5Zr合金显微组织和力学性能的影响.结果表明,该合金晶粒组织细小,少量Y、Sm和大量Gd固溶在镁基体里,同时有少量MgGd3、Mg24Y5和Mg41Sm5相析出;合金在室温、200、250℃下的抗拉强度分别为258、304、330 MPa;断裂为脆性断裂,与合金的低伸长率相对应.  相似文献   

9.
《铸造》2016,(2)
通过金相观察(OM)、扫描电镜(SEM)、能谱分析(EDS)、显微维氏硬度测试与拉伸测试研究了砂型铸造Mg-9Gd-4Y-0.5Zr合金的微观组织和力学性能。结果表明:铸态GW94合金主要由等轴晶琢-Mg固溶体、晶界处的共晶相Mg24(Gd,Y)_5以及少量的方块相Mg_5(Gd,Y)组成,优化后的固溶处理工艺为525℃伊6 h。固溶后的组织主要由琢-Mg过饱和固溶体、铸态残留相Mg_5(Gd,Y)以及固溶过程形成的方块相组成。GW94合金具有极高的时效硬化响应能力,250℃时效18 h后即达到峰值硬度(HV122)。室温拉伸时,峰值时效态合金的抗拉强度和屈服强度分别为300MPa和247 MPa,而伸长率仅为0.9%。250℃以内拉伸时,抗拉强度均高于300 MPa,表现出极佳的耐热性能,而且出现了抗拉强度随温度升高而升高的反常力学行为,这可能是由于茁忆相与位错相互作用所致。峰值时效态合金断裂机制由室温的穿晶断裂为主转变为高温的沿晶断裂。  相似文献   

10.
采用熔炼铸造法制备了添加1%~5%Sm(质量分数)的Mg-10Gd-0.5Zr合金,通过拉伸性能测试、扫描电镜、X射线衍射分析研究了Sm对合金显微组织和力学性能的影响。结果表明:Sm的加入形成了Mg41Sm5相,并促进了Mg_5Gd相析出。固溶时效处理后,晶界处粗大共晶组织溶解,析出相弥散分布,3%Sm的合金晶粒较细小,5%Sm的合金中出现短棒状Mg_5Gd相。在相同实验温度下,随着Sm含量的增加,合金的强度先升高后降低,3%Sm的合金抗拉强度最大。对于同一种合金,随着拉伸温度的升高抗拉强度先升高后降低,加入0%~1%Sm的合金抗拉强度峰值出现在200℃,加入3%~5%Sm的合金抗拉强度峰值出现在250℃。抗拉强度具有明显的反常温度效应,而且Sm的加入强化了这种反常温度效应并使强度峰值出现的温度升高。  相似文献   

11.
利用XRD、OM、SEM、EDS、TEM和拉伸性能测试,研究了不同热处理对Mg-5Gd-3Y-0.5Z合金组织和力学性能的影响。结果表明:Mg-5Gd-3Y-0.5Zr合金的铸态组织主要由基体相α-Mg、Mg5Gd和Mg24Y5相组成;经固溶处理后,铸态组织中粗大的析出相基本都溶入α-Mg基体;再经时效处理后,有纳米级别的颗粒状或片状相重新析出。室温条件下,Mg-5Gd-3Y-0.5Zr合金的抗拉强度在T6态达到最大值206.6 MPa。铸态和T6态合金的抗拉强度均随温度的升高,呈现出降低趋势,且下降速度较快;而T4态合金的强度在250℃以前基本保持不变。  相似文献   

12.
采用扫描电镜、 透射电镜、X射线衍射和拉伸试验等技术,研究了不同挤压比制备出的Mg-2.5Nd-0.5Zn-0.5Zr合金的微观组织和力学性能.结果表明,初始材料为近似等轴晶粒,平均晶粒尺寸约为23.8μm,沿晶界析出大量离异的共晶Mg12Nd相,在晶界处共晶相呈连续网状分布.挤压之后合金组织明显细化,E1(挤压比为7...  相似文献   

13.
采用OM、SEM、EDS、TEM和SAED等技术研究了Mg-12Gd-2Y-0.5Sm-0.5Sb-0.5Zr合金在铸态、时效态及固溶态的显微组织变化。结果表明,与铸态合金显微组织相比,时效态合金析出相更加细小弥散;铸态合金析出相有α-Mg、Mg5Gd相和Mg24Y5相,固溶态有α-Mg、Mg3Gd相和Mg24Y5相,时效态有α-Mg,Mg41Sm5,β'相。β'相形态为多个纺锤形相联结而成,相互夹角呈120°,具有周期结构。  相似文献   

14.
本文研究了热处理对砂型铸造Mg-4Sm-0.6Zn-0.4Zr合金显微组织和力学性能的影响,并运用光学显微镜、X射线衍射、扫描电子显微镜、透射电子显微镜以及力学实验设备对该合金进行了表征与分析。结果表明:铸态合金主要有α-Mg和Mg3Sm组成;固溶处理之后,Mg3Sm相完全溶入到基体且晶粒并未发生明显长大。250℃峰时效合金中主要的析出相为基面γ″沉淀相。峰时效态合金展示了最好的力学性能,其抗拉强度、屈服强度和断后伸长率分别为210 MPa、153 MPa和4.0%。根据峰时效态合金的强化机制的定量分析结果,发现峰时效态合金主要的强化效果来自于弥散分布的细小的γ″的沉淀强化,其对屈服强度的贡献为120MPa,约占总屈服强度的80%。  相似文献   

15.
《铸造》2016,(1)
采用XRD、OM、SEM和电子拉力试验机,研究了Ca(0~2.0%)对Mg-10Gd-0.5Zr合金显微组织和力学性能的影响。结果表明,Ca优先与Mg形成高熔点Mg_2Ca弥散相,可以细化合金的显微组织,提高时效合金的力学性能。在研究范围内,加入1.5%Ca的合金力学性能最优。Ca可以通过弥散强化和细晶强化机制对Mg-10Gd-0.5Zr合金力学性能产生影响。  相似文献   

16.
通过OM、XRD、TEM、SEM和电子拉力试验机等,研究了固溶和时效处理对Mg-8Gd-2.5Nd-0.5Zr(质量分数,%)合金显微组织和力学性能的影响。结果表明:合金铸态组织由α-Mg基体和含Mg5Gd相、Mg12Nd相的粗大枝晶组成,经过热处理后,合金中方块状颗粒相明显增多,且分布在晶界处;固溶时效态合金析出的纳米尺寸方块相可有效强化合金。时效态合金中β'析出相形态类似多个纺锤形相连接而成,相互之间的夹角呈120°,且具有周期结构。铸态、固溶态和时效态合金在不同状态下的室温拉伸强度分别为:189.3、201.4和251.1MPa。  相似文献   

17.
利用光学显微镜、扫描电镜及力学性能测试等分析手段研究了不同热处理条件对Mg-5Gd-0.5Sc-Mn合金的微观组织和力学性能的影响.结果表明,Mg-5Gd-0.5Sc-Mn合金具有良好的室温性能及高温稳定性.比较T5和T6两种热处理工艺发现:挤压态合金在200 ℃经过不同时间的时效,T5态较T6态的峰值时效硬度高,且T5态到达峰值时效的时间比T6态的短;合金T5态的室温抗拉强度可以达到216MPa,200 ℃达到191 MPa,均高于T6态的191和186MPa;T5态室温及高温条件下的断裂模式表现为准解理及微孔聚集的塑性断裂,而T6态室温及高温条件下分别为解理和准解理的脆性断裂.  相似文献   

18.
通过组织观察、拉伸试验和断口分析,研究了Mg-12Gd-2Y-(0,0.5,1.0,1.5)Sm-0.5Zr合金的显微组织和20~300℃下的力学性能。结果表明,随着Sm含量的增加,合金晶粒细化,屈服强度及高温抗拉强度显著提高。同时,随着温度的升高,合金的抗拉强度具有反常的温度效应。  相似文献   

19.
通过SF6+CO2气体保护,在大气环境下制备了Mg-12Gd-2Y-(0.5Sm,0.5Sb)-0.5Zr镁合金,采用OM、SEM、XRD和TEM等手段研究了20~300℃下时效态合金的显微组织和力学性能。结果表明:随Sm、Sb的加入,试验合金晶粒细化,合金屈服强度提高。随实验温度升高,屈服强度略微降低,抗拉强度提高。该合金具有抗拉强度的温度效应。断口分析表明,合金具有沿晶断裂+局部解理断裂的混合断口特征。  相似文献   

20.
通过OM,XRD,TEM和SEM等手段研究了热处理前后Mg-10Gd-2.5Nd-0.5Zr(质量分数,%)合金的显微组织形貌,并在3.5%(质量分数)Na Cl溶液中进行了0~96 h的失重腐蚀实验。结果表明:合金铸态组织由α-Mg基体和粗大的枝晶β相组成,热处理后,合金中的β相经溶解再析出过程,由断续网状转变为方块颗粒状;在3.5%Na Cl溶液中,经热处理后,合金的耐蚀性能明显提高,其平均腐蚀速率由铸态时的0.74 mg·cm~(-2)·d~(-1),降低到固溶态时的0.41 mg·cm~(-2)·d~(-1)和时效态时的0.35 mg·cm~(-2)·d~(-1),且腐蚀产物以Mg(OH)2为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号