共查询到13条相似文献,搜索用时 46 毫秒
1.
提出一种新的基于硫化物表面处理的InP/GaAs低温晶片键合技术.在360℃的退火温度下,获得了1.2MPa的键合强度.基于这种低温键合技术,可将外延生长在InP衬底上的In0.53Ga0.47As/InP多量子阱(MQW)键合并转移到GaAs衬底上.X射线衍射表明量子阱的结构未受键合过程的影响.光致发光谱分析表明键合后量子阱的晶体质量略有改善.电流电压特性的测试表明n-InP/n-InP的键合界面具有良好的导电特性;在n-InP/n-GaAs的键合界面存在着电荷势垒,这主要是由于键合界面存在GaAs氧化物薄层所致. 相似文献
2.
提出一种新的基于硫化物表面处理的InP/GaAs低温晶片键合技术.在360℃的退火温度下,获得了1.2MPa的键合强度.基于这种低温键合技术,可将外延生长在InP衬底上的In0.53Ga0.47As/InP多量子阱(MQW)键合并转移到GaAs衬底上.X射线衍射表明量子阱的结构未受键合过程的影响.光致发光谱分析表明键合后量子阱的晶体质量略有改善.电流电压特性的测试表明n-InP/n-InP的键合界面具有良好的导电特性;在n-InP/n-GaAs 的键合界面存在着电荷势垒,这主要是由于键合界面存在GaAs氧化物薄层所致. 相似文献
3.
提出了一种基于硼酸溶液的GaAs/InP低温晶片键合技术,实现了GaAs/InP基材料间简单、无毒性的高质量、低温(290℃)晶片键合。GaAs/InP键合晶片解理截面的扫描电子显微镜(SEM)图显示,键合界面整齐,没有裂缝和气泡。通过键合过程,InP上的In0.53Ga0.47As/InP多量子阱结构转移到了GaAs基底上。X射线衍射及荧光谱显示,键合后的多量子阱晶体质量未变。二次离子质谱(SIMS)和Raman光谱图显示,GaAs/InP键合晶片的中间层厚度约为17 nm,界面处B元素有较高的浓度,键合晶片的中间层很薄,因此可以得到较好的电学、光学特性。 相似文献
4.
5.
6.
7.
8.
采用三步法在GaAs衬底上实现InP材料的键合,通过X-射线光电子谱(XPS)对样品键合界面进行化学价态和深度分布分析.结果表明,键合温度小于450℃时,样品界面主要由三维氢键网络组成;大于450℃时界面处发生互扩散,Ⅴ族元素主要在界面处富集,而Ⅲ族元素具有较深的扩散.因此提出界面层以InGaAs、InGaP为主,这种界面化学态的变化对样品的Ⅰ-Ⅴ特性和键合强度都具有实质意义的影响,同时由于异质结带阶的存在,要获得良好的电学性质和强度,键合温度并不是越高越好,而是存在一个最佳温度.最后,在GaAs衬底上成功地键合了InGaAs/InP光电探测器. 相似文献
9.
10.
11.
针对化合物半导体与Si基晶圆异质集成中的热失配问题,利用有限元分析方法开展GaAs半导体与Si晶片键合匹配偏差及影响因素研究,建立了101.6 mm(4英寸)GaAs/Si晶圆片键合匹配偏差评估的三维仿真模型,研究了不同键合结构和工艺对GaAs/Si晶圆级键合匹配的影响,系统分析了键合温度、键合压力、键合介质厚度及摩擦... 相似文献
12.
采用双层条状金属热应力模型,用MATLAB方法对退火过程中GaAs/InP晶片间的应力和双轴弹性形变能进行模拟和分析。结果表明:将InP剪薄至200μm,GaAs剪薄至175μm,剪应力取得了一个相对的小值,而剥离应力更是被完全消除,这时正应力也相对较小。而按照一定的比例适度剪薄两侧晶片的厚度,可以使得两侧的双轴形变能减小到原来的一半以下。通过减薄键合晶片的厚度可以得到较好的键合质量。另外,不管那一种应力都随退火温度的升高而快速增加,所以实验中一定保持低的退火温度,通常小于300°C为宜。 相似文献
13.
通过实验和理论计算,分析了InP/Si键合过程中,界面热应力的分布情况、影响键合结果的关键应力因素及退火温度的允许范围。分析结果表明,由剪切应力和晶片弯矩决定的界面正应力是晶片中心区域大面积键合失败的主要原因,为保证良好的键合质量,InP/Si键合退火温度应该在300~350℃范围内选取。具体实验验证表明,该理论计算值与实验结果相一致。最后,在300℃退火条件下,很好地实现了2inInP/Si晶片键合,红外图像显示,界面几乎没有空洞和裂隙存在,有效键合面积超过90%。 相似文献