首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel alkaline copper slurry that possesses a relatively high planarization performance is investigated under a low abrasive concentration.Based on the action mechanism of CMP,the feasibility of using one type of slurry in copper bulk elimination process and residual copper elimination process,with different process parameters,was analyzed.In addition,we investigated the regular change of abrasive concentration effect on copper and tantalum removal rate and within wafer non-uniformity(WIWNU) in CMP process.When the abrasive concentration is 3 wt%,in bulk elimination process,the copper removal rate achieves 6125 °/min,while WIWNU is 3.5%,simultaneously.In residual copper elimination process,the copper removal rate is approximately 2700°/min,while WIWNU is 2.8%.Nevertheless,the tantalum removal rate is 0 °/min,which indicates that barrier layer isn’t eliminated in residual copper elimination process.The planarization experimental results show that an excellent planarization performance is obtained with a relatively high copper removal rate in bulk elimination process.Meanwhile,after residual copper elimination process,the dishing value increased inconspicuously,in a controllable range,and the wafer surface roughness is only 0.326 nm(sq < 1 nm) after polishing.By comparison,the planarization performance and surface quality of alkaline slurry show almost no major differences with two kinds of commercial acid slurries after polishing.All experimental results are conducive to research and improvement of alkaline slurry in the future.  相似文献   

2.
We propose the action mechanism of Cu chemical mechanical planarization(CMP) in an alkaline solution.Meanwhile,the effect of abrasive mass fraction on the copper removal rate and within wafer non-uniformity(WIWNU) have been researched.In addition,we have also investigated the synergistic effect between the applied pressure and the FA/O chelating agent on the copper removal rate and WIWNU in the CMP process.Based on the experimental results,we chose several concentrations of the FA/O chelating agent,which added in the slurry can obtain a relatively high removal rate and a low WIWNU after polishing,to investigate the planarization performance of the copper slurry under different applied pressure conditions.The results demonstrate that the copper removal rate can reach 6125 °/min when the abrasive concentration is 3 wt.%.From the planarization experimental results,we can see that the residual step height is 562 ° after excessive copper of the wafer surface is eliminated.It denotes that a good polishing result is acquired when the FA/O chelating agent concentration and applied pressure are fixed at 3 vol% and 1 psi,respectively.All the results set forth here are very valuable for the research and development of alkaline slurry.  相似文献   

3.
不含抑制剂的碱性抛光液对铜布线平坦化的研究   总被引:6,自引:6,他引:0  
本文提出一种碱性铜布线抛光液,其不含通用的腐蚀抑制剂,并对其化学机械抛光和平坦化 (CMP)性能进行了研究。首先研究了此抛光液对铜的静态腐蚀速率和抛光速率,并与含抑制 剂的铜抛光液做了对比实验。在静态条件下,此不含抑制剂的碱性铜抛光液对铜基本无腐蚀速率,而在动态抛光过程中对铜有较高的速率。而含抑制剂的抛光液对静态腐蚀速率略有降低,但是却大幅度降低了铜的去除速率。另外,对铜布线的化学机械平坦化研究表明,此不含抑制剂的碱性铜抛光液能够有效的去除铜布线表面的高低差,有较高的平坦化能力。此抛光液能够应用于铜CMP的第一步抛光,能够去除大量多余铜时初步实现平坦化。  相似文献   

4.
Chemical mechanical polishing (CMP) is one of the important machining procedures of multilayered copper interconnection for GLSI,meanwhile polishing slurry is a critical factor for realizing the high polishing performance such as high planarization efficiency,low surface roughness.The effect of slurry components such as abrasive (colloidal silica),complexing agent (glycine),inhibitor (BTA) and oxidizing agent (H2O2) on the stability of the novel weakly alkaline slurry of copper interconnection CMP for GLSI was investigated in this paper.First,the synergistic and competitive relationship of them in a peroxide-based weakly alkaline slurry during the copper CMP process was studied and the stability mechanism was put forward.Then 1 wt% colloidal silica,2.5 wt% glycine,200 ppm BTA,20 mL/L H2O2 had been selected as the appropriate concentration to prepare copper slurry,and using such slurry the copper blanket wafer was polished.From the variations of copper removal rate,root-mean square roughness (Sq) value with the setting time,it indicates that the working-life of the novel weakly alkaline slurry can reach more than 7 days,which satisfies the requirement of microelectronics further development.  相似文献   

5.
ULSI制备中多层布线导体铜的抛光液与抛光技术的研究   总被引:2,自引:1,他引:1  
提出了在碱性浆料中ULSI多层布线导体铜化学机械抛光的模型,对铜CMP所需达到的平面化、选择性、抛光速率控制、浆料的稳定及洁净度、抛光液成分的优化选择进行了实验研究。  相似文献   

6.
提出了在碱性浆料中 UL SI多层布线导体铜化学机械抛光的模型 ,对铜 CMP所需达到的平面化、选择性、抛光速率控制、浆料的稳定及洁净度、抛光液成分的优化选择进行了实验研究。  相似文献   

7.
基于化学机械动力学的碱性铜抛光液平坦化机理研究   总被引:1,自引:1,他引:0  
The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation. According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole(BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed. Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established. In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization.  相似文献   

8.
蒋勐婷  刘玉岭 《半导体学报》2014,35(12):126001-5
Chemical mechanical planarization(CMP) is a critical process in deep sub-micron integrated circuit manufacturing. This study aims to improve the planarization capability of slurry, while minimizing the mechanical action of the pressure and silica abrasive. Through conducting a series of single-factor experiments, the appropriate pressure and the optimum abrasive concentration for the alkaline slurry were confirmed. However, the reduced mechanical action may bring about a decline of the polishing rate, and further resulting in the decrease of throughput.Therefore, we take an approach to compensating for the loss of mechanical action by optimizing the composition of the slurry to enhance the chemical action in the CMP process. So 0.5 wt% abrasive concentration of alkaline slurry for copper polishing was developed, it can achieve planarization efficiently and obtain a wafer surface with no corrosion defect at a reduced pressure of 1.0 psi. The results presented here will contribute to the development of a “softer gentler polishing” technique in the future.  相似文献   

9.
研究了阴离子表面活性剂十二烷基硫酸铵(ADS)在弱碱性铜抛光液中对晶圆平坦化效果的影响.对不同质量分数的阴离子表面活性剂ADS下的抛光液表面张力、铜去除速率、抛光后铜膜的碟形坑高度、晶圆片内非均匀性和表面粗糙度进行了测试.实验结果表明,当阴离子表面活性剂ADS的质量分数为0.2%时,抛光液的表面张力降低,铜的去除速率为202.5 nm·min-1,去除速率片内非均匀性减小到4.15%,抛光后铜膜的碟形坑高度从132 nm降低到68.9 nm,表面粗糙度减小到1.06 nm.与未添加表面活性剂相比,晶圆表面的平坦化效果得到改善.  相似文献   

10.
Effects of electric potential on chemical-mechanical polishing of copper   总被引:1,自引:0,他引:1  
The effect of electric potential on the dissolution and polishing behavior of copper in acidic and alkaline media was investigated. The electromechanical polishing mechanism of copper is discussed based on removal rate of copper, pH of slurries, and surface morphology of polished copper. The most interesting phenomenon occurred in chemical-mechanical polishing (CMP) of copper with applied direct current (DC) voltage is the variation of pH during polishing. The dissolution experiments indicated that an acidic agent might have more hydrogen reduced with higher DC potential. The results demonstrated that the application of DC voltage is beneficial to improve planarization of copper polishing in an alkaline slurry.  相似文献   

11.
随着极大规模集成电路(GLSI)技术节点逐渐降低至28 nm,多层铜布线化学机械抛光过程中弱碱性抛光液的稳定性成为人们研究的热点.以四乙基氢氧化铵作为pH调节剂,配制不同pH值的新型弱碱性抛光液,研究各组抛光液的pH值、粒径、Zeta电位以及铜去除速率、表面粗糙度和去除速率一致性随存放时间(0,12,24,36和48 h)的变化,并与KOH作为pH调节剂的抛光液进行了对比.结果表明,pH值、粒径、Zeta电位在存放时间内基本不变.pH值大于10时平坦化效果较差,pH值为9.0时,平坦化效果较好,0和48 h铜去除速率为530 nm/min和493.1 nm/min,抛光后铜表面粗糙度为0.718和0.855 nm,铜去除速率一致性为4.31%和4.54%,该抛光液加入双氧水后可以稳定存放48 h以上,可满足工业生产的要求.  相似文献   

12.
碱性铜抛光液在300mm平坦化系统中CMP工艺优化的研究   总被引:1,自引:1,他引:0  
CMP process optimization for bulk copper removal based on alkaline copper slurry was performed on a 300 mm Applied Materials Reflexion LK system. Under the DOE condition, we conclude that as the pressure increases, the removal rate increases and non-uniformity is improved. As the slurry flow rate increases, there is no significant improvement in the material removal rate, but it does slightly reduce the WIWNU and thus improve uniformity. The optimal variables are obtained at a reduced pressure of 1.5 psi and a slurry flow rate of 300 ml/min. Platen/carrier rotary speed is set at a constant value of 97/103 rpm. We obtain optimized CMP characteristics including a removal rate over 6452 A/min and non-uniformity below 4% on blanket wafer and the step height is reduced by nearly 8000 A/min in the center of the wafer on eight layers of copper patterned wafer, the surface roughness is reduced to 0.225 nm.  相似文献   

13.
硅通孔(TSV)技术是一种先进的封装技术,化学机械抛光(CMP)是集成电路TSV制作过程中的重要步骤之一,是可兼顾材料表面局部和全局平坦化的技术。抛光液是影响抛光表面质量和加工效率的关键因素,是CMP工艺中消耗品成本最大的部分。TSV抛光液主要包括铜膜抛光液和阻挡层抛光液,依据抛光速率和抛光质量(表面粗糙度、碟形坑修正等)的要求对其进行了分类讨论,概述了近年来TSV抛光液的研究进展,对其今后的研究重点和发展趋势进行了分析和预测,认为TSV抛光液应朝着抛光速率和抛光质量的优化、低成本、环境友好的方向发展。  相似文献   

14.
TaN由于其良好的性能广泛用于布线铜与介质之间的阻挡层和黏附层.在对直径为300 mm的TaN镀膜片进行化学机械抛光(CMP)后,对比并分析了两种碱性抛光液对TaN去除速率、片内非均匀性、去除速率选择性和表面粗糙度的影响.结果表明,经过自主研发且不合氧化剂的碱性阻挡层抛光液抛光后,TaN的去除速率为40.1 nm/min,片内非均匀性为3.04%,介质、TaN与Cu的去除速率之比为1.69∶1.26∶1,中心、中间以及边缘的表面粗糙度分别为0.371,0.358和0.366 nm.与商用抛光液抛光结果相比,虽然采用自主研发的抛光液抛光的去除速率低,但片内非均匀性以及选择性均满足商用要求,且抛光后TaN表面粗糙度小,易清洗,无颗粒沾污.综合实验结果表明,自主研发的高性能碱性抛光液对TaN镀膜片具有良好的抛光效果,适合工业生产.  相似文献   

15.
化学机械平坦化(CMP)是铜互连制备过程中唯一的全局平坦化技术。但是由于互连线铜与扩散阻挡层物理及化学性质上的差异,在阻挡层的化学机械平坦化过程中将加剧导致碟形坑的产生。目前,国际上抛光液以酸性为主,但是其存在固有的问题,如酸性气体挥发,腐蚀严重等。本论文研发出一种新型碱性阻挡层抛光液,与商用的阻挡层抛光液做对比,评估了其抛光性能。实验结果表明,新型碱性阻挡层抛光液抛光后表面状态好,粗糙度较低。另外,碟形坑及电阻测试结果表明,新型碱性阻挡层抛光后铜布线的表面形貌好,碟形坑小,能够应用于铜布线阻挡层的CMP中。  相似文献   

16.
The evaluation methods of planarization capability of copper slurry are investigated.Planarization capability and material removal rate are the most essential properties of slurry.The goal of chemical mechanical polishing(CMP) is to achieve a flat and smooth surface.Planarization capability is the elimination capability of the step height on the copper pattern wafer surface,and reflects the passivation capability of the slurry to a certain extent.Through analyzing the planarization mechanism of the CMP process and experimental results,the planarization capability of the slurry can be evaluated by the following five aspects:pressure sensitivity,temperature sensitivity,static etch rate,planarization efficiency and saturation properties.  相似文献   

17.
ULSI中多层Cu布线CMP表面粗糙度的分析和研究   总被引:3,自引:1,他引:2  
分析介绍了Cu层表面粗糙度对器件性能的影响以及超大规模集成电路中多层Cu布线CMP的作用机理,研究分析了碱性抛光液对Cu的表面粗糙度的影响因素,如磨料、氧化剂、pH值、表面活性剂等对表面粗糙度的影响。实验证明,在一定的抛光条件下,选用SiO2为磨料、双氧水为氧化剂的碱性抛光液可以有效降低Cu层的表面粗糙度,使之达到纳米级,得到良好的抛光效果,从而解决了超大规模集成电路多层Cu布线化学机械抛光中比较重要的技术问题。  相似文献   

18.
碱性条件下,非离子型表面活性剂在阻挡层化学机械平坦化中起着重要的作用。分别对阻挡层材料Cu、Ta以及SiO2介质进行抛光,然后测量铜表面粗糙度。对含有不同浓度活性剂的抛光液进行接触角和Zeta电位的测试,并对活性剂的作用机理进行分析。活性剂体积分数达到3%时,铜表面粗糙度可达0.679 nm,抛光液在铜膜表面的接触角低至10.25°,Zeta电位达到-50.2 mV。实验结果表明,活性剂在减小粗糙度的同时可提高抛光液的湿润性和稳定性,便于抛光后清洗和长时间放置。  相似文献   

19.
Alkaline barrier slurry applied in TSV chemical mechanical planarization   总被引:2,自引:2,他引:0  
We have proposed a TSV (through-silicon-via) alkaline barrier slurry without any inhibitors for barrier CMP (chemical mechanical planarization) and investigated its CMP performance. The characteristics of removal rate and selectivity of Ti/SiO2/Cu were investigated under the same process conditions. The results obtained from 6.2 mm copper, titanium and silica show that copper has a low removal rate during barrier CMP by using this slurry, and Ti and SiO2 have high removal rate selectivity to Cu. Thus it may be helpful to modify the dishing. The TSV wafer results reveal that the alkaline barrier slurry has an obvious effect on surface topography correction, and can be applied in TSV barrier CME  相似文献   

20.
ULSI制造中Cu的电化学机械抛光   总被引:1,自引:0,他引:1  
电化学机械抛光(ECMP)技术可以在低压力下进行,有可能替代化学机械抛光(CMP)技术,满足含易碎、低介电常数材料的小尺寸特征结构的ULSI中Cu的抛光要求。利用自制的抛光液和改装的抛光机对晶圆片和图案晶圆片上的Cu进行电化学机械抛光,研究了抛光电压、抛光台转速、抛光压力和抛光液流量对抛光速率的影响,发现在抛光电压为4.7V、流量为150~200mL/min、抛光台转速为30~40r/min、抛光压力为3.45kPa时能达到较好的抛光速率。考察了抛光电压对图案晶圆片上台阶高度减小效率的影响,发现台阶高度减小效率随抛光电压增大而减小,并且对抛光机理做了初步分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号