首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于神经网络的交通标志识别方法   总被引:2,自引:0,他引:2  
介绍了神经网络分类器的基本原理,针对3类交通标志,即禁止标志、警告标志和指示标志,提出了应用神经网络分类器进行交通标志自动识别的基本方法。神经网络分类器由两层网络联结而成,前层网络由单个BP网络完成交通标志的粗分工作,后层由3个BP网络将组分结果分别进行细分,完成识别任务。此设计结构与传统的单层分类器相比,在训练速度和识别正确率方面都有较大的提高;显然,这与神经网络在解决小规模问题时正确率高、训练速度快相符合。同时,增加新的训练样本时,只要对相应网络进行训练即可,而不必对整个网络进行重新训练。实验结果表明,基于神经网络的交通标志自动识别方法,具有很好的识别效果。  相似文献   

2.
介绍了神经网络分类器的基本原理,针对3类交通标志,即禁止标志、警告标志和指示标志,提出了应用神经网络分类器进行交通标志自动识别的基本方法。神经网络分类器由两层网络联结而成,前层网络由单个BP网络完成交通标志的粗分工作,后层由3个BP网络将粗分结果分别进行细分,完成识别任务。此设计结构与传统的单层分类器相比,在训练速度和识别正确率方面都有较大的提高;显然,这与神经网络在解决小规模问题时正确率高、训练速度快相符合。同时,增加新的训练样本时,只要对相应网络进行训练即可,而不必对整个网络进行重新训练。实验结果表明,基于神经网络的交通标志自动识别方法,具有很好的识别效果。  相似文献   

3.
为了提升交通标志自动识别的精度,提出一种基于多尺度CNN的交通标志识别方法(TSR-MSCNN算法).该方法采用三阶段卷积神经网络,融合了低阶、中阶和高阶3种不同尺度的特征,并串联了多个小卷积层用以代替单个较大卷积层.通过对全连接层的神经元个数、Dropout参数、卷积核尺寸等网络超参数进行选比实验,获得了最佳的网络超...  相似文献   

4.
基于深度属性学习的交通标志检测   总被引:1,自引:0,他引:1  
为了弥补交通标志底层图像到高层语义之间的鸿沟,本文引入交通标志的形状、颜色、图案内容三种视觉属性,在卷积神经网络(Convolutional neural network,CNN)中加入属性学习(Attribute learning)约束,同时进行交通标志属性学习和分类学习,提出了一种基于深度属性学习的交通标志检测方法。并在公开数据集Sweden traffic sign detection dataset(STSD)和German traffic sign detection dataset(GTSD)上进行的实验结果表明,该方法能够有效地提高交通标志检测的准确率和召回率。  相似文献   

5.
一种基于混合学习算法的模糊神经网络控制   总被引:4,自引:0,他引:4  
针对BP算法容易陷入局部极小的缺点,利用遗传算法极强的全局搜索能力对模糊神经网络控制器参数进行离线优化,并对遗传操作进行了改进,使其最终搜索到全局最优或近似全局最优的附近.再利用BP算法较强的局部搜索能力和对对象的适应能力进一步进行参数的在线调整.仿真结果表明:该方案的综合性能优于常规模糊控制器.  相似文献   

6.
为了提升建筑能耗预测的精度、鲁棒性和泛化能力,提出树种算法(TSA)优化的径向基函数(RBF)神经网络与长短时记忆(LSTM)神经网络结合的混合预测模型. 采用基于自适应噪声的完全集成经验模态分解算法,将建筑能耗数据分解为1组本征模态函数(IMF)分量和1个残余分量,利用样本熵算法将各分量划分为高频分量和低频分量. 采用最小绝对收缩与选择算子(LASSO)方法进行特征选择. 分别利用TSA算法优化后的RBF模型与LSTM模型对低频分量和高频分量进行预测,并叠加重构得到最终预测结果. 模型评估结果表明,混合预测模型的精度为98. 72%. 相比于RBF、TSA-RBF、LSTM模型,所提模型的预测效果更好,且具有较强的鲁棒性和泛化能力,能够更为有效地用于建筑逐时电力能耗预测.  相似文献   

7.
交通标志识别(Traffic Sign Recognition,TSR)是智能交通系统的重要研究方向之一。因道路交通的环境复杂、交通标志数据库规模大小等因素制约,在设计TSR系统可行性方案时必须考虑算法的复杂度、识别率和鲁棒性。针对这一问题,本文提出了一种不同尺度的双通路跃层卷积神经网络算法,在同一通路上交通标志的底层局部特征和高层全局的特征,与不同通路上经过局部响应归一化和池化后的特征在全连接层融合,从而丰富了交通标志分类的特征,最后将特征图输入分类器进行交通标志识别。采用德国交通标志识别标准数据集(German Traffic Sign Recognition Benchmark,GTSRB)进行训练和测试,本文算法的识别率达到97.96%,明显优于单一通路的跃层卷积网络算法和人工方法。  相似文献   

8.
基于神经网络的气体目标识别方法   总被引:1,自引:0,他引:1  
研究神经网络在战场气体特征目标识别应用中的有效算法.通过建立战场目标气体特性探测与分析系统,针对战场上不确定背景条件下气体目标的自动识别问题,在总结目标特性规律,分析BP算法的基础上,采用BP算法对分类器进行训练,改善系统对信号的探测能力.典型战场目标信号样本检验表明:利用基于神经网络的分类器来实现对战场气体目标的识别分类是可行的.  相似文献   

9.
为了提高交通标志的识别速度和识别率,提出了一种基于视觉注意模型和SIFT特征的交通标志识别方法.首先基于视觉注意模型提取颜色特征,找出交通标志可能的候选区域,然后对候选区域进行SIFT特征提取,与标准交通标志图像库进行相似度计算,可实现快速准确的检测与识别.与传统方法相比,具有无需精确分割、计算量小、体现仿生学特性等优点.在采自国内外的两组交通标志图像库上进行交通标志识别测试,都得到了良好的效果.  相似文献   

10.
针对低能见度状态下对车辆与行人的视觉特征难以提取的问题, 提出一种将2路卷积神经网络融合从而实现对车辆与行人识别的方法。采用高斯背景差分法实现图像去模糊, 在双路网络中分别采用不同尺寸的滤波器, 调整滤波器的大小得到不同环境下图片的特征值, 采用反向传播算法计算梯度。实验结果显示, 与单路式卷积神经网络对比, 在能见度低的环境中, 该方法对车辆的辨识率提高至83.49%, 对行人的辨识率提高至87.36%, 表明在低能见度环境中, 双路式卷积神经网络识别准确率高于单路式卷积神经网络。  相似文献   

11.
为提高道路交通标志识别系统的实时性和准确度,提出一种改进的RGB空间颜色检测和SVM相结合的交通标志检测算法。首先使用直方图均衡化和Gabor滤波相结合的方法进行图像增强,突出目标颜色;然后使用改进的RGB空间颜色检测方法初步提取并切割出候选标志区域;最后使用HOG特征训练SVM分类器,对候选标志进行精确检测并判断其形状。在检测精度和检测用时2方面进行对比试验,其结果表明,本文算法的检测用时较短,误检率和错检率都较低。该算法能对亮度较低的图像进行有效处理,对旋转、部分遮挡等多种情况也有较优的稳定性和准确性,适用于复杂背景下的标志检测。  相似文献   

12.
针对PCA方法所提取的特征分类效果较差,而LDA方法通常不能直接应用于图像特征提取的问题,提出了一种基于PC-LDA的交通标志形状特征识别方法.通过对交通标志图像进行归一化和二值化处理,得到交通标志形状特征.将PCA方法与LDA方法相结合用于交通标志二值图像特征提取,可以得到既有最佳描述性又有最佳分类效果的PC-LDA特征子空间.利用标准交通标志图像数据库进行验证,并采用最小距离分类器对所提取的特征进行识别,结果表明,该方法能够快速有效地进行维数约减,提高了交通标志识别率.  相似文献   

13.
基于BP神经网络的人脸图像识别方法的研究   总被引:9,自引:1,他引:9  
提出了用BP神经网络对人脸图像进行特征提取和识别的方法,讨论了BP网络结构的设计,输入、输出层的设计,隐层结点数的选取等问题,对由10人,每人3幅图像组成的人脸图像数据库做识别实验,结果表明,BP具有很强的自适应性,对有噪声、残缺和戴眼镜的图像识别效果较好。  相似文献   

14.
提出了基于GWO-BP算法的软件缺陷预测模型,用于解决软件缺陷预测准确率不高的问题。基于BP神经网络算法建立模型,使用灰狼优化算法优化BP神经网络的参数值,解决其参数设置依赖性问题。采用交叉验证的方式进行实验,结果表明,相比于其他的BP神经网络算法,本文算法具有更高的软件缺陷预测准确度。  相似文献   

15.
提出了基于改进的BP神经网络的方法,并引入附加动量项和自适应学习率,根据所提的建模方法进行实际建模.计算结果表明,该模型能够较好地对床温进行预测,可以反映主要参数变化时循环流化床锅炉床温的动态特性,说明了该建模方法的可行性.  相似文献   

16.
修改的反向传播算法   总被引:3,自引:0,他引:3  
本文提出一个修改的反向传播算法,并基于这一算法设计了一个能进行故障诊断的神经网络模型。然后,用实验说明了这一算法的实用性。  相似文献   

17.
针对现有预测模型在话务量发展趋势变化、新技术新业务引入后模型失效、预测精度下降等问题,提出一种基于神经网络和事件样本库的智能预测方法。该方法具有自学习功能,可根据预测误差自动调整预测参数并更新事件样本,对话务量趋势变化、事件影响程度变化及新事件的发生具有持续自适应能力。仿真结果表明,该预测方法能有效降低预测误差,与现有方法相比,话务量的预测精度提高了6.57%。  相似文献   

18.
基于传统深度学习技术实现的道路交通标志识别系统通常遵从完全数据驱动模式,导致它们在真实世界的开放场景中存在性能不稳定和极大的安全隐患.为缓解该问题,提出一种基于道路交通标志设计标准的语义数据集构建方法,并利用零样本学习机制设计一个通用的具备推理能力和可解释性的道路交通标志识别框架,其能够有效应对实践中面临的道路交通标志的动态更新和类别缺失问题.利用国家道路交通标志制定标准来抽象出所有类别的通用属性,并将这些属性信息作为领域知识注入传统数据驱动模型的训练过程中.在领域知识的帮助下,所提基于零样本学习的交通标志识别方法能够比随机预测和传统深度学习模型更准确地识别出训练阶段未见过的交通标志.在中国交通标志数据库(Chinese traffic sign database, CTSDB)和德国交通标志识别基准数据集(German traffic sign recognition benchmark, GTSRB)上的实验结果表明,采用所提方法进行训练后,语义自编码模型在传统零样本学习的设定下,对于训练阶段未曾见过的交通标志的识别准确率分别比随机预测提升了至少29.96%和24.25%.  相似文献   

19.
为了提高道路交通标志的检测速度,提出一种基于轻量化YOLOv5的改进模型。首先,使用Ghost卷积和深度分离卷积(DWConv)构建新的主干模块,减少计算量和参数量;引入加权特征融合网络(BiFPN)结构,增强特征融合能力;将CIoU损失函数替换为SIoU损失函数,关注真实锚框与预测的角度信息,提升检测精度。其次,对TT100K数据集进行优化,筛选出标签个数大于200的交通标志图片和标注信息共24类。最后,实验结果取得84%的准确率、81.2%的召回率和85.4%的所有类别平均精确率的平均值mAP@0.5,相比原始YOLOv5,参数量减少29.0%,计算量减少29.4%,mAP@0.5仅下降0.1百分点,检测帧率提升了34帧/s。使用改进后的模型进行检测,检测速度有了明显提升,基本达到了在保持检测精度的基础上压缩模型的目的。  相似文献   

20.
本文提出一个修改的反向传播算法,并基于这一算法设计了一个能进行故障诊断的神经网络模型。然后,用实验说明了这一算法的实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号