首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous research has demonstrated that unit operations in whey protein manufacture promote off‐flavor production in whey protein. The objective of this study was to determine the effects of feed solids concentration in liquid retentate and spray drier inlet temperature on the flavor of dried whey protein concentrate (WPC). Cheddar cheese whey was manufactured, fat‐separated, pasteurized, bleached (250 ppm hydrogen peroxide), and ultrafiltered (UF) to obtain WPC80 retentate (25% solids, wt/wt). The liquid retentate was then diluted with deionized water to the following solids concentrations: 25%, 18%, and 10%. Each of the treatments was then spray dried at the following temperatures: 180 °C, 200 °C, and 220 °C. The experiment was replicated 3 times. Flavor of the WPC80 was evaluated by sensory and instrumental analyses. Particle size and surface free fat were also analyzed. Both main effects (solids concentration and inlet temperature) and interactions were investigated. WPC80 spray dried at 10% feed solids concentration had increased surface free fat, increased intensities of overall aroma, cabbage and cardboard flavors and increased concentrations of pentanal, hexanal, heptanal, decanal, (E)2‐decenal, DMTS, DMDS, and 2,4‐decadienal (P < 0.05) compared to WPC80 spray dried at 25% feed solids. Product spray dried at lower inlet temperature also had increased surface free fat and increased intensity of cardboard flavor and increased concentrations of pentanal, (Z)4‐heptenal, nonanal, decanal, 2,4‐nonadienal, 2,4‐decadienal, and 2‐ and 3‐methyl butanal (P < 0.05) compared to product spray dried at higher inlet temperature. Particle size was higher for powders from increased feed solids concentration and increased inlet temperature (P < 0.05). An increase in feed solids concentration in the liquid retentate and inlet temperature within the parameters evaluated decreased off‐flavor intensity in the resulting WPC80.  相似文献   

2.
Caseinomacropeptide (CMP) from bovine, ovine and caprine milk and whey protein concentrate (WPC) were both evaluated for adhesion inhibition of Streptococcus mutans to polystyrene surface and cell aggregation. Adhesion inhibition by the CMPs and WPC at 1 mg/mL was higher than 84%. The CMPs and WPC caused aggregation of S. mutans cells at low concentrations. These findings suggest the application of these milk derived proteins as potential dental caries inhibitors and for possible food application uses.  相似文献   

3.
One of the most important problems of Kashar cheese producers is mold and yeast spoilage during storage. Williopsis saturnus var. saturnus killer yeast has been reported to have an antagonistic effect on mold and yeast reproduction. In this study, the antifungal effect of a whey protein concentrate (WPC) coating containing W. saturnus was investigated in Kashar cheese. WPC with or without W. saturnus (7 log CFU/g) or W. saturnus without coating was applied on the surface of Kashar cheese samples and stored at 4 °C for 56 days. Microbiological, chemical, physical and sensory properties of cheese samples were assessed. After 56 days of storage, the numbers of lactic acid bacteria were not affected by WPC containing W. saturnus; however, the population of W. saturnus increased by 1 log CFU/g. Application of W. saturnus reduced the growth of other yeasts and molds (P < 0.05). Chemical, physical and sensory properties of all coated cheeses remained unchanged. In a conclusion, use of WPC coatings containing W. saturnus can potentially minimize mold and yeast spoilage of cheese during storage.  相似文献   

4.
Fluid whey or retentate are often bleached to remove residual annatto Cheddar cheese colorant, and this process causes off‐flavors in dried whey proteins. This study determined the impact of temperature and bleaching agent on bleaching efficacy and volatile components in fluid whey and fluid whey retentate. Freshly manufactured liquid whey (6.7% solids) or concentrated whey protein (retentate) (12% solids, 80% protein) were bleached using benzoyl peroxide (BP) at 100 mg/kg (w/w) or hydrogen peroxide (HP) at 250 mg/kg (w/w) at 5 °C for 16 h or 50 °CC for 1 h. Unbleached controls were subjected to a similar temperature profile. The experiment was replicated three times. Annatto destruction (bleaching efficacy) among treatments was compared, and volatile compounds were extracted and separated using solid phase microextraction gas chromatography mass spectrometry (SPME GC‐MS). Bleaching efficacy of BP was higher than HP (P < 0.05) for fluid whey at both 5 and 50 °C. HP bleaching efficacy was increased in retentate compared to liquid whey (P < 0.05). In whey retentate, there was no difference between bleaching with HP or BP at 50 or 5 °C (P > 0.05). Retentate bleached with HP at either temperature had higher relative abundances of pentanal, hexanal, heptanal, and octanal than BP bleached retentate (P < 0.05). Liquid wheys generally had lower concentrations of selected volatiles compared to retentates. These results suggest that the highest bleaching efficacy (within the parameters evaluated) in liquid whey is achieved using BP at 5 or 50 °C and at 50 °C with HP or BP in whey protein retentate.  相似文献   

5.
Saint‐Paulin cheese was made from cow’s milk refrigerated at 4 °C for 72 h and preserved by the lactoperoxidase (LP) system. The effect of the LP system on the microbiological, physicochemical and biochemical properties of cheese over a ripening period of 23 days was investigated, using a control (C0), refrigerated LP‐inactivated cow’s milk (C1) and refrigerated LP‐activated cow’s milk (LPA). The LPA treatment showed the least contamination in flora count, particularly salt‐tolerant bacteria at the end of the ripening period. LPA cheese had significantly lower coliform, yeasts and mould counts (P < 0.05) than the other cheeses; this demonstrated the bacteriostatic effect of the LP system. The proteolysis results showed the least value for LPA cheese as compared with the two other samples, as determined by using sodium dodecyl sulphate‐polyacrylamide gel electrophoresis of casein fractions extracted from the three samples. The findings indicated that the preservation of cow’s cheese milk by the LP system can be used to improve the microbiological quality, inhibit psychotropic germs, correct the losses of soluble nitrogen fractions in the whey and conserve the cheese yield affected by refrigeration.  相似文献   

6.
The hydrolysis of bovine whey protein concentrate (WPC), α-lactalbumin (α-La) and caseinomacropeptide (CMP), by aqueous extracts of Cynara cardunculus, was optimized using response surface methodology. Degree of hydrolysis (DH), angiotensin-converting enzyme (ACE)-inhibitory activity and antioxidant activity were used as objective functions, and hydrolysis time and enzyme/substrate ratio as manipulated parameters. The model was statistically appropriate to describe ACE-inhibitory activity of hydrolysates from WPC and α-La, but not from CMP. Maximum DH was 18% and 9%, for WPC and α-La, respectively. 50% ACE-inhibition was produced by 105.4 (total fraction) and 25.6 μg mL−1 (<3 kDa fraction) for WPC, and 47.6 (total fraction) and 22.5 μg mL−1 (<3 kDa fraction) for α-La. Major peptides of fractions exhibiting ACE-inhibition were sequenced. The antioxidant activities of WPC and α-La were 0.96 ± 0.08 and 1.12 ± 0.13 μmol trolox equivalent per mg hydrolysed protein, respectively.  相似文献   

7.
There is a market demand for nonfat fermented goats’ milk products. A nonfat goats’ milk yogurt containing probiotics (Lactobacillus acidophilus, and Bifidobacterium spp.) was developed using heat‐treated whey protein concentrate (HWPC) as a fat replacer and pectin as a thickening agent. Yogurts containing untreated whey protein concentrate (WPC) and pectin, and the one with only pectin were also prepared. Skim cows’ milk yogurt with pectin was also made as a control. The yogurts were analyzed for chemical composition, water holding capacity (syneresis), microstructure, changes in pH and viscosity, mold, yeast and coliform counts, and probiotic survivability during storage at 4 °C for 10 wk. The results showed that the nonfat goats’ milk yogurt made with 1.2% HWPC (WPC solution heated at 85 °C for 30 min at pH 8.5) and 0.35% pectin had significantly higher viscosity (P < 0.01) than any of the other yogurts and lower syneresis than the goats’ yogurt with only pectin (P < 0.01). Viscosity and pH of all the yogurt samples did not change much throughout storage. Bifidobacterium spp. remained stable and was above 106CFU g‐1 during the 10‐wk storage. However, the population of Lactobacillus acidophilus dropped to below 106CFU g‐1 after 2 wk of storage. Microstructure analysis of the nonfat goats’ milk yogurt by scanning electron microscopy revealed that HWPC interacted with casein micelles to form a relatively compact network in the yogurt gel. The results indicated that HWPC could be used as a fat replacer for improving the consistency of nonfat goats’ milk yogurt and other similar products.  相似文献   

8.
Based on the thermostability of caseinmacropeptide (CMP) and on the differences in molecular weight of its polymeric and monomeric forms, we have developed a method of isolating CMP from whey protein concentrate (WPC) and from liquid sweet cheese whey, particularly suited to large-scale industrial production. This procedure includes acidification and heating and ultrafiltration of cheese whey to give a CMP powder with a protein content from 75 to 79%. CMP obtained from WPC and from pure bovine, ovine, and caprine cheese whey were characterized. The CMP recovery was close to 71-76% and the purity determined by RP-HPLC ranged from 75 to 90%.  相似文献   

9.
The effect of high temperature-short time (HTST) pasteurization of milk, Cheddar cheese whey and cheddar cheese whey ultrafiltration (UF) retentate upon the composition, physicochemical and functional properties of whey protein concentrates (WPC) was investigated. HTST pasteurization (72°C-15 sec) of milk, whey and UF retentate caused no significant differences in chemical composition of resulting WPCs. HTST pasteurization of milk and whey had no significant effect upon WPC solubility, whereas, heating UF retentate caused significant loss of WPC solubility. HTST pasteurization of milk caused a significant lowering (P<0.10) of maximum foam expansion of WPC dispersions, but HTST pasteurization of whey and UF retentate had no significant effect upon this latter parameter.  相似文献   

10.
The effect of pretreatment upon the composition and physicochemical and functional properties of whey, ultrafiltration (UF) retentate and freeze-dried and spray-dried whey protein concentrates (WPC) was investigated. Pretreatment was by cooling cheese whey to 0-5°C, adding calcium chloride, adjusting to pH 7.3, warming to 50°C, and removing the insoluble precipitate that formed by centrifugation or decantation. UF permeation flux rate of pretreated whey was about double that for control whey. Pretreated whey was essentially turbidity free, contained 85% less milkfat, 37% more calcium and 40% less phosphorus than whey. Pretreated whey WPC proteins were slightly more soluble at pH 3, but less functional for emulsification than whey WPC proteins. Neither whey WPC proteins nor pretreated whey WPC proteins was functional for foaming at 6% protein concentration.  相似文献   

11.
12.
Angiotensin‐converting enzyme inhibitory (ACE‐I) activity as affected by Lactobacillus helveticus strains (881315, 881188, 880474, and 880953), and supplementation with a proteolytic enzyme was studied. Reconstituted skim milk (12% RSM) or whey protein concentrate (4% WPC), with and without Flavourzyme® (0.14% w/w), were fermented with 4 different L. helveticus strains at 37 °C for 0, 4, 8, and 12 h. Proteolytic and in vitro ACE‐I activities, and growth were significantly affected (P < 0.05) by strains, media, and with enzyme supplementation. RSM supported higher growth and produced higher proteolysis and ACE‐I compared to WPC without enzyme supplementation. The strains L. helveticus 881315 and 881188 were able to increase ACE‐I to >80% after 8 h of fermentation when combined with Flavourzyme® in RSM compared to the same strains without enzyme supplementation. Supplementation of media by Flavourzyme® was beneficial in increasing ACE‐I peptides in both media. The best media to release more ACE‐I peptides was RSM with enzyme supplementation. The L. helveticus 881315 outperformed all strains as indicated by highest proteolytic and ACE‐I activities.  相似文献   

13.
The aim of present research was to optimise the conditions to develop nutritionally rich honey powder using honey, whey protein concentrate (WPC), aonla (Emblica officinalis. Gaertn) and basil (Ocimum sanctum) extract with the help of co‐current spray drier. Response surface methodology was applied to study the effects of inlet temperature (160–180 °C), whey protein concentrate (25–35%), feed flow rate (0.08–0.13 mL s?1), aonla extract (6–8%) and basil extract (6–8%) on product responses, viz. bulk density, hygroscopicity, antioxidant activity (AOA), total phenolic content (TPC) and vitamin C. Statistical analysis revealed that independent variables significantly affected all the responses. The results demonstrated that increasing inlet temperature lowered the bulk density, hygroscopicity, AOA, TPC and vitamin C, whereas addition of aonla extract and basil extract increased the AOA (82.73%), TPC (63.27%) and total vitamin C content (94.89%) as these functional compounds were encapsulated by WPC. Similarly, with increase in feed flow rate and WPC, there was increase and decrease in the bulk density and hygroscopicity, respectively. The recommended optimum spray‐drying conditions were inlet air temperature (170 °C), feed rate (0.11 mL s?1), whey protein concentrate (35%), aonla (8%) and basil extract (6%).  相似文献   

14.
ABSTRACT: Dairy proteins are amenable to structural modifications induced by high temperature, shear, and moisture; in particular, whey proteins can change conformation to new unfolded states. The change in protein state is a basis for creating new foods. The dairy products, nonfat dried milk (NDM), whey protein concentrate (WPC), and whey protein isolate (WPI) were modified using a twin-screw extruder at melt temperatures of 50, 75, and 100 °C, and moistures ranging from 20 to 70 wt%. Viscoelasticity and solubility measurements showed that extrusion temperature was a more significant (P < 0.05) change factor than moisture content. The degree of texturization, or change in protein state, was characterized by solubility (R2= 0.98). The consistency of the extruded dairy protein ranged from rigid (2500 N) to soft (2.7 N). Extruding at or above 75 °C resulted in increased peak force for WPC (138 to 2500 N) and WPI (2.7 to 147.1 N). NDM was marginally texturized; the presence of lactose interfered with its texturization. WPI products extruded at 50 °C were not texturized; their solubility values ranged from 71.8% to 92.6%. A wide possibility exists for creating new foods with texturized dairy proteins due to the extensive range of states achievable. Dairy proteins can be used to boost the protein content in puffed snacks made from corn meal, but unmodified, they bind water and form doughy pastes with starch. To minimize the water binding property of dairy proteins, WPI, or WPC, or NDM were modified by extrusion processing. Extrusion temperature conditions were adjusted to 50, 75, or 100 °C, sufficient to change the structure of the dairy proteins, but not destroy them. Extrusion modified the structures of these dairy proteins for ease of use in starchy foods to boost nutrient levels. Practical Application: Dairy proteins can be used to boost the protein content in puffed snacks made from corn meal, but unmodified, they bind water and form doughy pastes with starch. To minimize the water binding property of dairy proteins, whey protein isolate, whey protein concentrate, or nonfat dried milk were modified by extrusion processing. Extrusion temperature conditions were adjusted to 50, 75, or 100 °C, sufficient to change the structure of the dairy proteins, but not destroy them. Extrusion modified the structures of these dairy proteins for ease of use in starchy foods to boost nutrient levels.  相似文献   

15.
Cheddar cheese whey was ultrafiltered to yield whey protein concentrates (80% WPC). The retentates were heated at 64 or 72°C for 1.5 set or received no heat treatment. Changes in composition and hydrophobicity during processing were related to WPC functionality. Heating at 72°C decreased retentate hydrophobic@ and had a detrimental affect of WPC functionality, while heating at 64°C did not. Day to day variation in the milk supply and processing conditions did not affect hydrophobicity; but the unit operations did have an effect. Ultrafiltration increased the alkane binding values of the retentate compared to the whey. Spray drying the retentate increased surface hydrophobicity and decreased alkane binding values of the WPC.  相似文献   

16.
A study was conducted to develop pearl millet‐based extruded snacks with whey protein concentrate (WPC) to enhance its acceptability and nutritional value. Pearl millet grits (841 μ) was extruded with different levels (0%, 2.5%, 5.0% and 7.5%) of WPC at constant feed rate (10.5 kg h?1) and moisture content (14%). Addition of whey protein at 7.5% level significantly ( 0.05) increased Tg from 75.1 ± 0.26 °C to 120.5 ± 1.28 °C and Tm from 89.1 ± 1.51 °C to 158.7 ± 1.37 °C, which resulted in less expanded and harder extrudates. The expansion index of extrudates was negatively correlated ( 0.05) with protein (r = ?0.940), bulk density (r = ?0.949), hardness (r = ?0.971) and breaking strength (r = ?0.921), while positively correlated ( 0.05) with overall acceptability (OAA; r = 0.988). Keeping in view the nutritional, textural and consumer's acceptability, incorporation of 5% WPC in pearl millet grits (841 μ) was recommended for preparation of acceptable expanded snacks.  相似文献   

17.
Proteolytic characteristics of five varieties of commercial goat milk cheeses and a cow milk Cheddar aged under different conditions were evaluated by SDS-PAGE and an advanced densitometry system. All fresh goat cheeses had distinctively lower intensities of αS1-casein (CN) bands than those of cow milk Cheddar, whereas intensities of β-CN were much greater in the goat cheeses. The PAGE patterns clearly displayed αS2-CN in all goat cheese, but it was negligible in cow milk Cheddar. The greater protein degradation in hard goat cheeses than cow milk Cheddar at 4°C and 22°C strongly correlated with water-soluble nitrogen compound concentrations and densitometric values of corresponding cheeses.  相似文献   

18.
Meat exudates were collected from massaged cured porcine M semimembranosus using a model massaging unit. Exudates were used to observe changes in gelation properties due to the incorporation of commercially available non‐meat proteins. These included: soya isolate (90%), sodium (Na) caseinate (85%) and high gelling whey protein concentrates (WPCs, A‐35%, B‐75% and C‐β‐lactoglobulin (55%), as well as a regular 76% protein, WPC D. Compositional analysis ( n=6) showed that incorporation of non‐meat proteins significantly (P<0.05) increased the protein concentration of test exudates in all cases compared to controls. The viscoelastic properties of control and test meat exudate samples (n=6) were analysed using control stress rheology in oscillatory mode. All exudates were heated from 20 to 80°C at 1°C min−1, and subsequently cooled after 30 min back down to 20°C at 1°C min −1. Addition of WPCs at a 1, 2 and 3% residual powder level and soya isolate at a 1% residual level, resulted in increased storage modulus G′ (Pa) values compared with controls. A 1% residual level of Na caseinate was detrimental to meat exudate gelation, resulting in lower final G′ (Pa) values than those observed for the control. © 1999 Society of Chemical Industry  相似文献   

19.
In order to develop a process for the production of a whey protein concentrate (WPC) with high gel strength and water-holding capacity from cheese whey, we analyzed 10 commercially available WPC with different functional properties. Protein composition and modification were analyzed using electrophoresis, HPLC, and mass spectrometry. The analyses of the WPC revealed that the factors closely associated with gel strength and water-holding capacity were solubility and composition of the protein and the ionic environment. To maintain whey protein solubility, it is necessary to minimize heat exposure of the whey during pretreatment and processing. The presence of the caseinomacropeptide (CMP) in the WPC was found to be detrimental to gel strength and water-holding capacity. All of the commercial WPC that produced high-strength gels exhibited ionic compositions that were consistent with acidic processing to remove divalent cations with subsequent neutralization with sodium hydroxide. We have shown that ultrafiltration/diafiltration of cheese whey, adjusted to pH 2.5, through a membrane with a nominal molecular weight cut-off of 30,000 at 15 degrees C substantially reduced the level of CMP, lactose, and minerals in the whey with retention of the whey proteins. The resulting WPC formed from this process was suitable for the inclusion of sodium polyphosphate to produce superior functional properties in terms of gelation and water-holding capacity.  相似文献   

20.
Meat exudates were collected from massaged cured porcine M semimembranosis using a model massaging unit. Exudates were used to observe changes in gelation properties of test exudates containing carrageenans and whey protein concentrate (WPC) and carrageenan blends. Three carrageenan powders iota (ι ), kappa (κ), as well as a kappa/locust bean gum mix, were assessed at a 1% residual level, both individually and as blends. WPCs assessed included high gelling A‐35, B‐75 and C 55% protein β‐lactoglobulin powders, as well as a regular 76% protein, WPC D. All WPCs were incorporated at a 2% residual powder level in the final meat. Treatment and control meat samples and resulting exudates were prepared in duplicate with analysis performed in triplicate. The viscoelastic properties of control and test meat exudate samples (n=6) were analysed using control stress rheology in oscillatory mode. All exudates were heated from 20 to 80°C at 1°C min−1 , and subsequently cooled after 30 min back down to 20°C at 1°C min−1. Combinations of high gelling WPCs, especially β‐lactoglobulin together with iota and kappa‐carrageenans A and B, were found to increase storage modules G′ (Pa) values when compared with control values. Significant (p<0.05) synergies were observed on blending high gelling WPCs with carrageenans A and B. © 1999 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号