首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vicilins (7S storage proteins) isolated from the seeds of the legumes Vigna unguiculata (cowpea), Vigna angularis (adzuki bean), Canavalia ensiformis (jack bean), Glycine max (soybean), Phaseolus vulgaris (common bean) and Phaseolus lunatus (lima bean) were shown to be immunologically related and to bind to a chitin matrix. The effect of the isolated vicilins on the development of the cowpea weevil Callosobruchus maculatus was examined. Vicilins from all non-host seeds, including those of the C maculatus-resistant cowpea line IT81D-1045, strongly inhibited larval development (ED50 of 1·07±0·32% to 2·22±0·64%). Vicilins from the C maculatus-susceptible cowpea CE-31 and adzuki bean seeds were the exception with ED50 of 6·25±0·75% and 5·40±1·54%, respectively. These results correlate well with the host range of C maculatus and are possibly a reflection of the low digestibility of vicilins by insect midgut proteinases in addition to the ability they show in binding to chitin-containing structures like the ones found in the bruchid midguts. © 1998 SCI.  相似文献   

2.
The cowpea weevil, Callosobruchus maculatus (F.) (Col.: Bruchidae) is a cosmopolitan field-to-store pest ranked as the major post-harvest pest of cowpea in tropical regions. The cold tolerance of an insect species can vary as a result of abiotic features including food resources. In this study, C. maculatus larvae were fed with proline and trehalose (10, 20, and 40 mmol) treated cowpea seeds to determine the effects of these potential cryoprotectants on the supercooling (SCP) and cold hardiness of the upcoming adult beetles. The SCPs of the control, proline-fed and trehalose-fed adults non-significantly changed from −18.2 °C for the control to −17.2 °C for trehalose-fed adults. The cold hardiness (24 h at 0, -5.0, −7.5, −10.0, and −12.5 °C) of the adults was almost the same for control and treatments. Median lethal times (LT50; lethal time for 50% mortality) were 6.3, 6.0, and 5.4 h, respectively. Moreover, feeding the larvae with proline and trehalose-treated seeds did not affect the proline and trehalose contents of the adult beetles. Our results showed that C. maculatus could not tolerate subzero temperatures well above their SCP, indicating that this species might be a chill-susceptible insect.  相似文献   

3.
Mature seeds of the inged bean (Psophocarpus tetragonolobus) are toxic to developing larvae of a range of cosmopolitan storage Bruchidae of economic importance, including the copea seed eevil, Callosobruchus maculatus. Insect feeding trials ere carried out in hich protein fractions from seeds of inged bean ere incorporated at a range of concentrations into artificial seeds, and their effects upon development of C maculatus determined. Both albumin and globulin fractions ere toxic to the developing larvae and their toxicity correlated ith their haemagglutinating activity. Assay of Psophocarpin A, B and C fractions demonstrated Psophocarpin B to be the most insecticidal and to contain the highest haemagglutinating activity. Purified basic seed lectin as highly insecticidal to C maculatus larvae, ith an LC50 value of c. 3·5 g kg?1. The physiological level of this protein in inged bean seeds is sufficient to account for their resistance to attack by C maculatus. inged bean trypsin inhibitor as also purified and tested in artificial seeds against C maculatus. Hoever, even at concentrations in excess of tice the physiological concentration it had no deleterious effects upon development.  相似文献   

4.
Common bean is a legume of significant socioeconomic importance and is cultivated worldwide. This crop is affected by several pests and diseases, which cause considerable economic losses and reduce yield. In recent years, several studies have demonstrated the role of proteins and peptides with activity against a wide range of insects and pathogens. The objective of this work was to identify defense proteins, such as antimicrobial peptides, protease and amylases inhibitors in common bean genotypes and evaluate the relationship of these proteins with Phaseolus vulgaris seed resistance to Callosobruchus maculatus infestation. Nineteen common bean genotypes were subjected to protein extraction, pH 5.4, and precipitation with ammonium sulfate at 70% saturation. The obtained extracts were separated by tricine gel electrophoresis. Experiments were carried out with natural seeds of common beans and artificial seeds (Vigna unguiculata seeds covered with seed coats of common beans) to evaluate the rate of oviposition and development of the insect species Callosobruchus maculatus. Lipid-transfer proteins were identified in nine genotypes whereas defensins were present in all genotypes. The inhibitory activity of α-amylases and trypsin and fungal development were determined in crude extracts (50 μg mL−1). The results also indicated that the extracts from all bean genotypes inhibited the activity of human salivary α-amylase and C. maculatus larval α-amylase. Except for the extracts of four genotypes, all other extracts inhibited trypsin activity. None of the extracts from the evaluated bean genotypes inhibited the growth of tested fungi. Natural seeds from all genotypes did not inhibit insect oviposition, however, the larvae did not survive after feeding on these seeds. Artificial seeds containing seed coat flour of all genotypes inhibited the oviposition of C. maculatus, indicating that the seed coat was also repellent to insect.  相似文献   

5.
The bruchid beetle Callosobruchus maculatus (F.) causes extensive damage to seeds of the cowpea, Vigna unguiculata (L.) (Walp.), when this important tropical foodstuff is stored. A variety of cowpea resistant to attack by this pest has been described. In the present work seeds of a number of cowpea varieties, including the resistant one, were tested for the presence of a physical resistance to C. maculatus, in terms of repulsion of oviposition or of failure of larvae to enter the seeds. No evidence to suggest the presence of a physical resistance was found. When seeds of cowpea varieties were tested for the presence of various antimetabolic secondary compounds, only inhibitory activity against trypsin and, to a much lesser extent, chymotrypsin, could be detected. The resistant variety of cowpea contained a significantly higher level of inhibitors, about twice as much as any other variety. A proteinase inhibitor active against trypsin was purified from cowpea varieties by affinity chromatography on trypsin-Sepharose. The purified inhibitor was shown to inhibit chyraotrypsin also, in such proportions as to account for chymotrypsin inhibition by seed extracts. The inhibitor was shown to consist of a number of isoinhibitors by gel electrophoresis and isoelectric focusing, but no qualitative differences in the inhibitor between varieties could be detected. The antimetabolic nature of the cowpea trypsin inhibitor was confirmed by insect feeding trials in which various protein fractions were added to a basic meal and the effect on larval survival noted. The albumin proteins of cowpea (containing the trypsin inhibitors) at a level of 10% were toxic to larvae of C. maculatus whereas the globulin fractions were not. Further, if cowpea trypsin inhibitor was removed from the albumin proteins they ceased to be toxic. When purified cowpea trypsin inhibitor was added to the basic meal it was shown that a level slightly less than that found in the resistant variety of cowpea caused complete mortality of larvae, whereas lower levels had lesser or no effect. It is concluded that this example of insect resistance in the cowpea is due to an elevated level of trypsin inhibitor.  相似文献   

6.
The biomonitor technique was investigated as a rapid and automatic method for measuring the resistance of cowpea varieties to the seed beetle Callosobruchus maculatus. This technique measures the activity of internally feeding insect larvae by counting ultrasonic emissions produced as they feed. Activity throughout the development of C. maculatus larvae in known susceptible and resistant cowpea varieties was recorded. This showed details of the development of each larval instar, and showed clear differences between the resistant and susceptible cowpeas. A rapid method for comparing cowpeas was proposed in which the activity of larvae was recorded for 24 h starting 14 days after oviposition. Using this method, significant differences in activity were apparent between one susceptible and two resistant cowpea varieties. Further comparisons using a randomised block experimental design also showed a clear difference in activity between one susceptible and one known resistant cowpea variety. This experimental protocol took 21 days. It is suggested that the biomonitor offers a promising method for screening seeds for resistance to insect pests with a reduction in the time and effort required over conventional bioassay methods.  相似文献   

7.
Protein α-amylase inhibitors were prepared from wheat and their effects tested against insect storage pests both in vitro against the insect α-amylases and in vivo in insect feeding trials. Inhibitor fraction A was found to inhibit porcine pancreatic α-amylase but not insect α-amylases, whereas fractions B, C and D (0.28) did not inhibit porcine pancreatic α-amylase but were strong inhibitors of digestive α-amylases from larvae of Tribolium confusum, a storage pest of wheat products, and Callosobruchus maculatus, a storage pest of legume seeds. Fraction D, which was a single polypeptide of Mr 13 000 was the most effective inhibitor in vitro. It would appear that the degree of inhibition by the wheat α-amylase inhibitor preparations can be correlated with the presence of the Mr 13 000 (0.28) polypeptide since the purer this polypeptide the stronger was the inhibition; fraction A which contained two polypeptides of Mr 60 000 and 58 000 caused no inhibition. The effects of fractions B and C on larval development were determined in insect feeding trials. With C. maculatus both fractions were toxic, their relative effectiveness being directly paralleled by their effectiveness observed in vitro. Only fraction C was tested against T. confusum in feeding trials. Despite this fraction being equally effective against both pests in vitro it had very little effect upon larval development of T. confusum in vivo, thus suggesting that this organism is able to detoxify the wheat α-amylase inhibitors. As far as the authors are aware, this is the first time that the effects of identified inhibitor fractions have been monitored both in vitro and in vivo. The results, in contrast to previous proposals, suggest that selecting wheat varieties for high α-amylase inhibitory activity may not be a very reliable criterion in selecting for insect resistance.  相似文献   

8.
Although high concentrations of zinc and manganese were found in mandibles of insect larvae that bore into seeds, these metals were not detected in mandibles of insect larvae that attack previously damaged seeds. Metals were present in the larval mandibles of a lepidopteran, the Angoumois grain moth (Sitotroga cerealella), and eight coleopterans, the lesser grain borer (Rhyzopertha dominica), cigarette beetle (Lasioderma serricorne), drugstore beetle (Stegobium paniceum), spider beetle (Gibbium aequinoctiale), warehouse beetle (Trogoderma variabile), cadelle (Tenebroides mauritanicus), larger black flour beetle (Cynaeus angustus), and cowpea weevil (Callosobruchus maculatus). Larvae of these species can chew into seeds. Larvae of six other coleopterans, the varied carpet beetle (Anthrenus verbasci), sawtoothed grain beetle (Oryzaephilus surinamensis), rusty grain beetle (Cryptolestes ferrugineus), red flour beetle (Tribolium castaneum), longheaded flour beetle (Latheticus oryzae), and granary weevil (Sitophilus granarius) have little if any ability to chew into seeds, and did not have metal in their mandibles. Larvae of the granary weevil hatch and feed within seeds that were penetrated previously during egg deposition by adults. However, newly hatched larvae of the cowpea weevil and the Angoumois grain moth have to bore through the seed coat before they begin feeding, and they have mandibles with high concentrations of zinc. These data support the hypothesis that deposition of zinc and/or manganese in larval mandibles enhances the larva's ability to penetrate seeds.  相似文献   

9.
The bruchid Callosobruchus maculatus causes major losses during the storage of the seeds of Vigna unguiculata in West Africa. An endemic parasitoid, the pteromalid Dinarmus basalis is present in the stores and can reduce the increase in bruchid populations. African farmers often place in the stores the leaves of a shrub, Boscia senegalensis Lam.(Capparaceae), which release methylisothiocyanate (MITC). This compound is toxic to adult bruchids and could reduce seed losses but its influence on the bruchid natural enemy D. basalis was hitherto unknown. The susceptibility of C. maculatus and D. basalis to MITC was assessed under laboratory conditions. The susceptibility of adults of both species towards MITC were similar. After a 24 h exposure, the LC50 was respectively 0.48 and 0.54 mg/l for C. maculatus and D. basalis. The ovicidal activity of this compound was high; the LC50 of C. maculatus eggs was 0.04 mg/l after a 24 h exposure to MITC. High MITC concentrations only slightly affected the survival of C. maculatus during its post-embryonic development in the seeds of V. unguiculata. Gas chromatographic analysis demonstrated that 25-35% of the MITC present in the atmosphere of the experimental jars was absorbed by the seeds but concentrations inside the cotyledons were too low to influence the survival of the C. maculatus larvae. The D. basalis larvae developing at the expense of their host inside the larval galleries, were more affected by the treatment. The introduction of B. senegalensis releasing MITC in the storage systems could reduce the density of the parasitoid population and so increase the seed losses by permitting the development of the bruchid population.  相似文献   

10.
Seed coat tannins and bruchid resistance in stored cowpea seeds   总被引:1,自引:0,他引:1  
Seeds of wild species and varieties of Vigna were screened for their tannins and α‐amylase inhibitor contents as defensive compounds against cowpea weevil. Seed coats contained condensed tannins that were positively correlated to their colour but not to their resistance against the insect. The α‐amylase inhibitors were present in different amount in cotyledons of all species analysed. Amongst the cultivated lines assayed, Vigna unguiculata TVu 2027, an accession identified as moderately resistant, was found to contain the higher amount of α‐amylase inhibitor. When wild species were considered, V luteola and V vexillata (two resistant species) showed the highest content of α‐amylase inhibitors. In addition, two cultivated accessions (Vita 7 and IT 84E‐1‐108) of cowpea seeds, both classified as susceptible accessions, showing a different degree of bruchid damage in storage, were also analysed. No α‐amylase inhibitory activity was found in cotyledons of undamaged Vita 7 seeds, while the seed coat tannin content was found to be 13 times higher in undamaged Vita 7 seeds than in IT 84E‐1‐108 infested seeds. These latter results support the hypothesis that seed coat tannins must also be considered in biochemical defence mechanisms, which can deter, poison or starve bruchid larvae that feed on cowpea seeds. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
BACKGROUND: Starchy seeds are an important food and a source of dietary ingredients in many countries. However, they suffer from extensive predation by bruchids (weevils) and other pests. α‐Amylase inhibitors are attractive candidates for the control of seed weevils, as these insects are highly dependent on starch as an energy source. RESULTS: A proteinaceous α‐amylase inhibitor from the seeds of Achyranthes aspera was identified, purified and characterised. In electrophoretic analysis, two prominent amylase inhibitor activity bands (AI1 and AI2) were detected. The inhibitor was purified 9.99‐fold with 1206.95 total amylase inhibitor units mg?1 protein. The molecular weight of the purified inhibitor was around 6 kDa. The isolated α‐amylase inhibitor was found to be resistant to heat and proteolysis. Feeding analysis of Callosobruchus maculatus larvae on a diet containing seed powder of A. aspera revealed that survival of the larvae was severely affected, with the highest mortality rate occurring on the fifth day of feeding. The isolated inhibitor inhibited the majority of amylase isoforms of C. maculatus, Tribolium confusum and Helicoverpa armigera in electrophoretic analysis and solution assays. CONCLUSION: The information obtained in the present investigation could be useful for a genetic engineering approach that would make seeds resistant to storage pest infestations. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
The bean weevil Acanthoscelides obtectus (Say) is a major storage peat of Phaseolus vulgaris L (kidney, haricot bean). The seeds of P vulgaris contain high levels (up to 30 mg g?1 DM) of lectin, which has been shown to be toxic towards larvae of the related bruchid storage pest of cowpea, Callosobruchus maculatus F. The lack of toxicity of this lectin towards larvae of A obtectus is demonstrated. Unlike the strong binding of lectin to the midgut epithelium observed in larvae of C maculatus, no binding of lectin molecules was found to occur in the gut epithelial cells of A obtectus. This observation provides the basis for a hypothesis explaining the lack of toxicity of P vulgaris lectin towards A obtectus. Assays of proteolytic activity in gut homogenates of C maculatus and A obtectus suggest that the difference in susceptibility of the two insects towards the toxic effects of the lectin is not due to differential inactivation by proteolysis. Besides its effects on larval development, the lectin has a further effect at pupation, causing disruption of adipose tissues in C maculatus but having no effect on A obtectus.  相似文献   

13.
Callosobruchus maculatus, a pest that causes serious damage to chickpea Cicer arietinum, cannot develop in the seeds of Phaseolus or Vigna spp. which contain lectins. The insecticidal activity towards C. maculatus in these seeds is attributed both to lectins with specific affinity to N-acetylglucosamine, the major component of insect chitin, and to alpha-amylase inhibitors (lectin-like proteins). The insecticidal properties of bean meal or bean protein extracts from different sources towards different pest species are variable and need to be experimentally evaluated. The main objective of this study was to determine through a feeding trial on artificial chickpea seed the potential of bean seed meal from a wild bean Vigna caracalla, four varieties of Phaseolus vulgaris, and of a protein extract of P. vulgaris seed, to alter different life history traits of C. maculatus. The chickpea weevil was set up on artificial chickpea seeds containing different amounts of bean meal to observe the effects on female oviposition, percentage of development to adulthood and juvenile development time. These traits were combined in a composite index measuring the alteration of the multiplication rate of C. maculatus fed on artificial seed. The activity of lectin-like extracts was observed on chickpea artificial seed spiked with bean seed extract. Incorporation of bean flour at a rate of 10 and 20% in chickpea artificial seed significantly decreased C. maculatus female fecundity, percentage of adult emergence, and greatly increased the development time. Feeding trials with protein extracts of P. vulgaris reduced fecundity and survival of C. maculatus. Incorporation of 10% V. caracalla bean seed meal in chickpea artificial seed, reduced the multiplication potential of C. maculatus by over 90% showing that bean seed lectin extracts are worthy of further investigation for post-harvest infestation control.  相似文献   

14.
The bruchid beetles Callosobruchus chinensis (L.) and C. maculatus (F.) are destructive pests of stored mungbean (Vigna radiata (L.) Wilczek). The development of resistant mungbean varieties to manage bruchids is a major breeding objective. In the present study, we investigated the characteristics of resistance to C. chinensis and C. maculatus in two new resistant mungbean accessions V1128 and V2817, and two previously reported resistant accessions V2709 and V2802, compared to the susceptible mungbean cultivar, KPS1. Evaluation for resistance to both bruchid species using whole and decorticated seeds revealed that V1128 and V2817 were free from damage, V2709 and V2802 showed partial damage with low or moderate number of bruchids emerging from seeds, and KPS1 showed complete damage with the highest number of bruchids emerged. Comparison of the seeds harvested at seed filling, early maturity and full maturity stages revealed that the percentage of damaged seeds from resistant accessions was lower at all stages compared with KPS1. V1128 and V2817 showed complete resistance against both bruchids regardless of when their seeds were harvested, while resistance in V2709 and V2802 were most pronounced at full maturity, and KPS1 was totally damaged at all times tested. These results suggest that the chemical factor(s) conferring resistance is synthesized as early as the seed filling stage. Evaluation of resistance using artificial seeds showed that increasing the percentage of resistant seed powder adversely affected bruchid growth and development. The number of adults emerging from seeds and number of damaged seeds decreased while adult developmental period increased as the proportion of resistant seed powder increased. The weight of emerging male and female adults of C. maculatus was lighter than those from the seeds containing susceptible seed powder alone. However, C. chinensis adults were not affected by the same test. The results suggest that biochemical(s) in cotyledon tissue are responsible for the resistance and the seed coat had no protective role against the bruchids. Although all four resistant accessions evaluated are useful for mungbean breeding, V1128 and V2817 show complete resistance to both C. chinensis and C. maculatus. Thus, these two new resistant sources may be the most effective for breeding purposes.  相似文献   

15.
Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) is an important pest of processed stored grains worldwide. Study of life history, feeding efficiency and digestive function of an insect on different host cultivars can indicate their resistance for the insect's population increase. Due to the economic importance of T. castaneum on stored rice flour, this research was aimed to investigate the life history, feeding indices and digestive enzymatic activity of T. castaneum on flour of eight rice cultivars (Ali-Kazemi, Dom-Siah, Fajr, Gilaneh, Gohar, Hashemi, Khazar, and Neda). A delay in the developmental time of T. castaneum was detected on cultivar Gohar. The lowest fecundity and egg fertility were observed on cultivar Gohar. Feeding indices of fourth instar larvae were the lowest on cultivars Gohar and Neda. The amylolytic activity of fourth instar larvae was the highest on cultivars Hashemi, Dom-Siah, Ali-Kazemi and Gilaneh, and the lowest on cultivar Gohar. Also, the highest and lowest proteolytic activities of fourth instar larvae were on cultivars Khazar and Hashemi, respectively. Significant correlations were detected between tested parameters of T. castaneum with starch and protein value of examined cultivars flour. The results of cluster analysis indicate that Dom-Siah, Hashemi and Ali-Kazemi are relatively susceptible cultivars, and other tested cultivars, especially Gohar, are relatively resistant cultivars for feeding of T. castaneum. The resistant rice cultivars could be further evaluated to identify secondary biochemicals that contribute to T. castaneum resistance.  相似文献   

16.
Low pressure creates a low-oxygen controlled atmosphere that can kill all developmental stages of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). This study investigated the interaction of low pressure with seed variety to determine the susceptibility of different cowpea varieties to developmental stages of C. maculatus. Laboratory studies were performed to determine exposure periods to low pressure (32.5 ± 1.0 mm Hg) necessary to kill all life stages of C. maculatus on different cowpea varieties. The results indicated that with the exception of eggs, differences in exposure periods required to achieve 100% mortality varied with life stage and variety. The larval stages were the most susceptible, and larvae required shorter exposure periods to low pressure when reared on C. maculatus resistant varieties (24-125B-3 and IT89KD-288) than on susceptible varieties (CB-3, CB-5, CB-46 and UC-27). Analysis of variance (ANOVA) showed a significant interaction between the life stages of C. maculatus, exposure time and cowpea varieties on mortality. Integration of low pressure applications with storage of cowpea varieties resistant to C. maculatus has the potential of providing an alternative pest management tool to fumigants, which are sometimes used in protecting cowpea in storage from infestation by C. maculatus.  相似文献   

17.
Callosobruchus chinensis (azuki bean weevil) and Callosobruchus maculatus (cowpea weevil) are the most destructive pests that cause significant losses to cowpea (Vigna unguiculata) seeds during storage. Development of cultivar(s) resistance to bruchids is a major goal in cowpea breeding program. Cowpea accession “TVu 2027” has been identified as moderately resistant to C. maculatus. Genetic studies of the seed resistance in this accession using strains of C. maculatus from Africa and America have demonstrated that the resistance is controlled by one or two recessive genes. However, there is no reports on genetics of the resistance to C. chinensis and to strain(s) of C. maculatus from Asia. Therefore, the objective of this study was to investigate genetics of the resistance to C. chinensis and C. maculatus in TVu 2027. TVu 2027 (P2) and PK2015VTN001 (P1; susceptible cowpea) were used to develop six basic generations (populations), viz. P1, P2, F1 (P1 × P2), F2 (P1 × P2), BC1P1 (P1 × F1) and BC1P2 (P2 × F1). The population were evaluated for percentage of damaged seeds (PDS) and area under the disease progress stairs (AUDPS; indicating infestation severity) by C. chinensis and C. maculatus. The results showed that TVu 2027 was moderately resistant to both bruchid species. Broad-sense heritability for PDS and AUDPS was moderate, being 70% and 73% for C. chinensis, respectively, and 64% and 61% for C. maculatus, respectively. Number of genes controlling C. chinensis resistance and C. maculatus resistance was two genes and one gene, respectively. Generation mean analysis revealed that genes with additive effect and additive × dominance gene interaction are involved in the resistance to both bruchid species. Correlation analysis suggested that the genes controlling resistance to C. chinensis and those conferring resistance to C. maculatus are unlinked.  相似文献   

18.
When cowpea grain is stored in airtight containers, destructive populations of the cowpea bruchid (Callosobruchus maculatus) don’t develop even though the grain put into the store is already infested with sufficient C. maculatus to destroy the entire store within a few months. The surprising effectiveness of hermetic storage for preserving grain against insect pests has long been linked with the depletion of oxygen in the hermetic container and with the parallel rise in carbon dioxide. With C. maculatus, low oxygen (hypoxia) leads to cessation of larval feeding activity, whereas elevated levels of carbon dioxide (hypercarbia) have little or no effect on feeding. Cessation of feeding arrests the growth of the insects, which don’t mature and don’t reproduce. As a result, population growth ceases and damaging infestations don’t develop. C. maculatus eggs, larvae, and pupae subjected to hypoxia eventually die after exposures of various duration. The cause of death is desiccation resulting from an inadequate supply of water. We demonstrate that blocking the supply of oxygen interdicts the main supply of water for C. maculatus. This leads to inactivity, cessation of population growth, desiccation and eventual death.  相似文献   

19.
The effect of insecticide resistance on the potential for control of stored product insect pests based on plant resistance was evaluated. Flours made from three rice cultivars (cvs.) that showed resistance or susceptibility to feeding by Tribolium castaneum were studied, using two strains, resistant and susceptible to the organophosphate insecticide, malathion. Flours made from rough, brown and milled rice were used to help identify the locus of any cultivar resistance mechanisms. The insect-resistant (Dawn) and moderately resistant (Lebonnet) cvs. had fewer eggs laid and caused greater mortality of the insects than the susceptible cultivar (cv.) (IR8). For all cvs., flour from brown rice was the most suitable for insect survival, whereas the highest larval weights were found in milled and the lowest in rough rice flours. On the other hand, the highest mortality of the susceptible strain occurred in milled rice flours. The larvae resistant to malathion survived significantly better than those of the susceptible strain, when fed on flour from the insect-resistant cv. (Dawn). The cause of this positive interaction between the insecticide resistance status of T. castaneum and the grain resistance is not known. The mechanism of malathion resistance occurring in this strain is enhanced malathion-specific carboxylesterase activity but it is not known how this can confer survival benefits, when the insect feeds on flour from the resistant cv. These results could have practical implications for the efficacy of stored product pest control using varietal resistance in situations where insecticide resistance is prevalent.  相似文献   

20.
Seeds of the kidney bean (Phaseolus vulgaris) are toxic to developing larvae of the bruchid beetle (Callosobruchus maculatus), a major storage pest of many legumes. Insect feeding trials were carried out whereby the albumin and globulin protein fractions from seeds of P. vulgaris were incorporated into artificial seeds. Both fractions were shown to be toxic and to contain haemagglutinating activity, implicating the seed lectins as being involved in seed resistance. Further feeding trials using different P. vulgaris lectin preparations confirmed the toxicity of these lectins and suggested that it was the E-type lectin subunits (erythrocyte-binding) which were the major antimetabolites. Indirect immunofluorescence investigations using monospecific antisera for globulin lectins showed that the lectins, when ingested by the larvae, bound to the midgut epithelial cells. It was suggested that the mechanism of lectin toxicity in this instance is analogous to that known to occur in the rat, namely that the ingested lectin causes disruption of the epithelial cells of the larval midgut leading to breakdown of the transport of nutrients into these cells, and the absorption of potentially harmful substances. This is the first time that evidence for the mechanism of lectin toxicity has been obtained in insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号