首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Izod impact strength and tensile elongation‐to‐break were measured for blends of nylon 66 and polystyrene in a polypropylene matrix with and without compatibilization by an ionomer resin (for nylon 66) and a styrene‐block‐ethylene‐co‐butylene‐block‐styrene copolymer (for polystyrene). With 20% nylon 66 and 20% polystyrene, about 5% of each compatibilizer was optimal. When used together for the ternary blend, there seemed to be little gross interference (or synergism) between the compatibilizers. A comparison between binary blends suggests that what interaction does exists may be synergistic. Polym. Eng. Sci. 44:1800–1809, 2004. © 2004 Society of Plastics Engineers.  相似文献   

2.
The compatibilizing efficiency of three different compatibilizers on the thermoplastic polyurethane/styrene‐co‐acrylonitrile (TPU/SAN) blends properties was investigated after compatibilizer's incorporation via melt‐mixing. The compatibilizers studied were as follows: poly‐ε‐caprolactone (PCL) of different molecular weight (Mw), a mixture of polystyrene‐block‐polycaprolactone (PS‐b‐PCL) and polystyrene‐block‐poly (methyl methacrylate) (PS‐b‐PMMA), and a mixture of polyisoprene‐block‐polycaprolactone (PI‐b‐PCL) and polybutadiene‐block‐poly (methyl methacrylate) (PB‐b‐PMMA). In our study, the effect of 5 wt % added compatibilizers on TPU/SAN blends morphology was examined. The transmission electron microscopy (TEM) was used to study the morphology at different length scales and to determine the compatibilizer's location. Investigations showed the different improvement of properties, because of the different incorporation of compatibilizers in the polymer blend. The morphology influence on the rheological behavior of compatibilized blends was investigated with a stress‐controlled rheometer (Rheometric Dynamic Stress Rheometer, SR‐500). Different compatibilization activity was found for different system. It was also found that compatibilization activity of added compatibilizer strongly depends on the comaptibilizer's Mw. Blends compatibilized with PCL showed superior properties as compared with the other examined blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2303–2316, 2006  相似文献   

3.
In this study, styrene‐b‐ethylene/butylene‐b‐styrene triblock copolymer (SEBS) and maleic anhydride grafted SEBS (SEBS‐g‐MA) were used as compatibilizers for the blends of polyphenylene sulfide/nylon 66 (PPS/PA66). The mechanical properties, including impact and tensile properties and morphology of the blends, were investigated by mechanical properties measurements and scanning electron microscopy. Impact measurements indicated that the impact strength of the blends increases slowly with elastomer (SEBS and SEBS‐g‐MA) content upto 20 wt %; thereafter, it increases sharply with increasing elastomer content. The impact energy of the elastomer‐compatibilized PPS/PA66 blends exceeded that of pure nylon 66, implying that the nylon 66 can be further toughened by the incorporation of brittle PPS minor phase in the presence of SEBS or SEBS‐g‐MA. The compatibilization efficiency of SEBS‐g‐MA for nylon‐rich PPS/PA66 was found to be higher than SEBS due to the in situ forming SEBS interphase between PPS and nylon 66. The correlation between the impact property and morphology of the SEBS‐g‐MA compatibilized PPS/PA66 blends is discussed. The excellent impact strength of the nylon‐rich blends resulted from shield yielding of the matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

4.
Cocontinuous blends of 45/55 polypropylene (PP)/acrylonitrile‐butadiene‐styrene (ABS) with multiwall carbon nanotubes (MWNT) were prepared by melt‐mixing in a conical twin‐screw microcompounder. PP‐grafted‐maleic anhydride (PP‐g‐MA) and styrene MA were used as compatibilizers for PP/ABS blends. Scanning electron microscopic observations showed phase segregation of PP‐g‐MA in the blends. State of dispersion of MWNT in the presence or absence of the compatibilizers was assessed through AC electrical conductivity measurements and crystallization studies of the blends. An improvement in AC electrical conductivity was observed in blends in presence of either styrene MA or dual compatibilizers. The lowest electrical percolation threshold was achieved at 0.1 wt % of MWNT using sodium salt of 6‐amino hexanoic acid‐modified MWNT. Significant increase in crystallization temperature of PP phase of blends with MWNT was observed in the presence of compatibilizers as compared to blends without compatibilizers. An attempt has been made to address the complex issues of phase segregation, compatibilization, and dispersion of MWNT in cocontinuous blends of PP/ABS. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
In this paper a new method based on the determination of heat capacity increment at the glass transition (ΔCp) is presented to quantify the effectiveness of compatibilizers for immiscible polymer blends. In order to show the validity of the method, two immiscible blends, polypropylene–poly(ethylene terephthalate) (PP–PET) and PP–polyamide‐6,6 (PP–PA66), and two compatibilizers, N, N‐dihydroxyethyl monomaleic amide–grafted PP (g–PP) alone and together with a phenolic resin (PR), were investigated. Scanning electron microscopy (SEM) observations prove that the two compatibilizer systems are both effective for compatibilizing the blends, and the combined use of g–PP and PR is more effective than g–PP alone. Modulated‐temperature differential‐scanning calorimetry (M‐TDSC) determinations reveal that the ΔCp varies with the extent of compatibilization. For the uncompatibilized blends, the ΔCp for the PET component in PP–PET or for the PA66 component in PP–PA66 was found to be almost unchanged. After compatibilization these quantities become smaller. Also, the combined use of g–PP and PR results in the smallest ΔCp values for both blends. This ΔCp change with different compatibilizers is in very good agreement with the corresponding morphological variation observed by SEM. Thus, ΔCp can be taken as a new parameter for quantifying the extent of compatibilization, since it is a direct measure of interfacial content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2868–2876, 1999  相似文献   

6.
Oxazoline functionalized polypropylene, polyethylene, ethylene propylene copolymer (E/P), and styrene ethylene/butylene styrene copolymer (SEBS) were studied as compatibilizers in blends of polyolefins with polyesters and polyamides. The blends investigated were polypropylene/polyamide 6, polypropylene/polybutylene terephtalate, and polyethylene/polyamide 6, with engineering thermoplastic contents of 30 wt %. The blends were prepared in a twin-screw midiextruder, and injection molded with a mini-injection molding machine. The effect of compatibilizing on the morphology and mechanical properties of the blends was of interest. Compatibilization substantially improved the toughness of all tested blends. Their strength and stiffness remained at the level of the binary blends when polypropylene or polyethylene based compatibilizers were used, but slightly decreased with other compatibilizers. Morphological studies showed that the particle size was reduced, and the adhesion of the dispersed phase to the matrix improved by compatibilization. The effect of unfunctionalized polyethylene, polypropylene, E/P, and SEBS was also studied to compare the compatibilizers with them. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1923–1930, 1998  相似文献   

7.
Polyblends of nylon 6 and liquid crystalline polymer (LCP) (Vectra A 950) are immiscible and highly incompatible, with resultant poor interfacial adhesion, large phase domains, and poor mechanical properties. In the present work, compatibilizing strategies are put forward for blends containing nylon and LCP. Effects of three types of compatibilizers, including ionomer Zn–sulfonated polystyrene (SPS), reactive copolymer styrene–maleic anhydride (SMA), functional grafted copolymers—polypropylene grafted glycidyl methacrylate (PP‐g‐GMA) and polypropylene grafted maleic anhydride (PP‐g‐MAH)—are studied in the aspects of morphology and dynamic mechanical behavior. The addition of compatibilizers decreases the domain size of the dispersed phase and results in improved interfacial adhesion between LCP and matrix. The compatibilization mechanism is discussed by way of diffuse reflectance Fourier transform spectroscopy (DRIFT), showing the reaction between compatibilizers and matrix nylon 6. Mechanical properties are improved by good interfacial adhesion. The contribution of SMA to mechanical properties is more obvious than that of Zn‐SPS and grafted PPs used. The blending procedure is correlated with the improvement of mechanical properties by the addition of compatibilizer. Two‐step blending is demonstrated as an optimum method to obtain composites with better mechanical properties as a result of a greater chance for LCP to contact the compatibilizer. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1452–1461, 2003  相似文献   

8.
Effects of compatibilizers on impact properties of polypropylene/ polystyrene (PP/PS) blends were studied and carried out through melt blending using co- rotating twin-screw extruder. A combination of two compatibilizers, maleic anhydride grafted polypropylene (PP-g-MA) and styrene maleic anhydride (SMA) was applied into PP/PS blends. Results from the Izod impact strengths, SEM observations and contact angle measurements in PP(50)/PS(50) blends indicated a better compatibilization effect with the use of dual compatibilizers. This was most probably due to improved adhesion between phases in PP/PS blend systems. The use of dual compatibilizers in the blend compositions produced higher impact properties in the PP/PS blend systems compared to single compatibilizer system.  相似文献   

9.
The compatibilization of blends of poly(ethylene‐2,6‐naphthalate) (PEN) with polystyrene (PS), through the styrene‐glycidyl methacrylate copolymers (SG) containing various glycidyl methacrylate (GMA) contents, was investigated in this study. SG copolymers are able to react with PEN terminal groups during melt blending, resulting in the formation of desirable SG‐g‐PEN copolymers in the blend. These in situ formed copolymers tend to reside along the interface preferentially as the result of interfacial reaction and thus function as effective compatibilizers in PEN/PS blends. The compatibilized blends exhibit higher viscosity, finer phase domain, and improved mechanical properties. It is found that the degree of grafting of the in situ formed SG‐g‐PEN copolymer has to be considered as well. In blends compatibilized with the SG copolymer containing higher GMA content, heavily grafted copolymers would be produced. The length of the styrene segment in these heavily grafted copolymers would be too short to penetrate deep enough into the PS phase to form effective entanglements, resulting in the lower compatibilization efficiency in PEN/PS blends. Consequently, the in situ formation of SG‐g‐PEN copolymers with an optimal degree of grafting is the key to achieving the best performance for the eventually produced PEN/PS blends through SG copolymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 967–975, 2003  相似文献   

10.
Different polymers containing sulfonic groups attached to the phenyl rings were prepared by sulfonation of polystyrene (PS) and styrene‐block‐(ethylene‐co‐1‐butene)‐block‐styrene (SEBS). The sulfonation degree (SD) was varied between 1 and 20 mol% of the styrene units. Polyphase materials containing sulfonated units were prepared by blending styrene‐block‐butadiene‐block‐styrene (SBS), with both sulfonated PS and sulfonated SEBS in a Brabender mixer. Such a procedure was performed as an alternative route to direct sulfonation of SBS which is actually not selective towards benzene rings because of the great reactivity of the double bonds in polybutadiene (PB) blocks to sulfonation agents. Thermal and dynamic‐mechanic analysis, together with morphology characterization of the blends, is consistent with obtaining partially compatible blends characterized by higher Tg of the polystyrene domains and improved thermal stability. © 2001 Society of Chemical Industry  相似文献   

11.
Tetramethylpolycarbonate‐block‐poly(styrene‐co‐acrylonitrile) (TMPC‐block‐SAN) block copolymers containing various amounts of acrylonitrile (AN) were examined as compatibilizers for blends of polycarbonate (PC) with poly(styrene‐co‐acrylonitrile) (SAN) copolymers. To explore the effects of block copolymers on the compatibility of PC/SAN blends, the average diameter of the dispersed particles in the blend was measured with an image analyzer, and the interfacial properties of the blends were analyzed with an imbedded fibre retraction technique and an asymmetric double‐cantilever beam fracture test. Reduction in the average diameter of dispersed particles and effective improvement in the interfacial properties was observed by adding TMPC‐block‐SAN copolymers as compatibilizer of PC/SAN blend. TMPC‐block‐SAN copolymer was effective as a compatibilizer when the difference in the AN content of SAN copolymer and that of SAN block in TMPC‐block‐SAN copolymer was less than about 10 wt%. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
The compatibilization mechanism of some compatibilizers for blends of polyolefins with a liquid crystalline polymer (LCP) was studied. Polyethylene (PE) and polypropylene (PP) were blended with a semirigid LCP (SBH) in a batch mixer, either with and without compatibilizers. The latter were two commercially available samples of functionalized polyolefins, that is, a PE‐g‐MA (HDM) and a PP‐g‐AA (Polybond 1001) copolymer and some purposely synthesized PE‐g‐LCP and PP‐g‐LCP copolymers. Microtomed films of the binary and the ternary blends were annealed at 240°C on the hot stage of a polarizing microscope and the changes undergone by their morphology were recorded as a function of time. The results indicate that the compatibilizers lower the interfacial tension, thereby providing an improvement of the minor phase dispersion. In addition to this, the rate of the coalescence caused by the high‐temperature treatment is appreciably reduced in the systems compatibilized with the PE–SBH and PP–SBH graft copolymers. Among the commercial compatibilizers, only Polybond 1001 displayed an effect comparable to that of the above copolymers. HDM improved the morphology of the as‐prepared PE blends, but failed to grant sufficient morphological stabilization against annealing‐induced coarsening. The results are discussed with reference to the chemical structure of the different compatibilizers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3027–3034, 2000  相似文献   

13.
The effects of the compatibilization on the toughening of polypropylene (PP) by melt blending with styrene/ethylene‐butylene/styrene triblock copolymer (SEBS) in a twin‐screw extruder were investigated. The compatibilizers used were an SEBS functionalized with maleic anhydride, a PP functionalized with acrylic acid, and a bifunctional compound, p‐phenylenediamine (PPD). The effects of the compatibilization were evaluated through the mechanical properties and by the determination of the phase morphology of the blends by scanning electron microscopy. Reactive compatibilized blends show up to a 30‐fold increase in impact strength compared to neat PP, which was likely to have been due to the reaction of the bifunctional compound (PPD) with the acid acrylic and maleic anhydride groups, which rendered both morphological and mechanical stability to these blends. The addition of the PPD to the blends significantly changed their phase morphologies, leading to larger dispersed particles' average diameters, probably due to the morphological stabilization at the initial processing steps during extrusion, with the occurrence of the chemical reactions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1081–1094, 2003  相似文献   

14.
The reactive type copolymers styrene maleic, anhydride (SMA) and styrene glycidyl methacrylate (SG) are used as in situ compatibilizers in polyblends of polystyrene (PS) and nylon 6, 6 (N66). Both copolymers can react with N66 to form copolymers as effective compatibilizers to reduce interfacial tension and increase phase adhesion. However, the toughness of the compatibilized blends is significantly lower than of the corresponding noncompatibilized blends. Only a small fraction of SMA is actually reacted in a typical melt blending, and SG copolymer seems to be more reactive than SMA. The unreacted copolymers are expected to be distributed mostly in the PS phase because of their structural similarity. The reacted copolymers are not exclusively distributed along the interface; some may distribute in both matrices. SMA is known as a very brittle polymer, and the way it is distributed can greatly influence the toughness of the resulting blends. PS is also very brittle relative to N66, and moreover a high amount of SMA in the N66 phase is detrimental since N66 is responsible for the toughness of PS/N66 blends. The better compatibilized blends have the tendency to bring more SMA and reacted SMA into the N66 phase. The relative detrimental effect on the inherent toughness of N66 is much more severe than in case of PS, if they contain the same amount of SMA. This study demonstrates that polyblends with good compatibilizers do not guarantee toughness improvement. The way the compatibilizers affect the inherent properties of the matrix needs also to be taken into consideration.  相似文献   

15.
BACKGROUND: Charge storage capability is a fundamental property of polymers used in electromechanical transducer applications. In this work, the charge retention of ternary blends of poly(phenylene ether) and polystyrene modified with poly(styrene‐co‐acrylonitrile), polystyrene‐block‐poly(ethylene‐co‐butylene)‐block‐polystyrene or polystyrene‐block‐polyisobutylene‐block‐polystyrene (SIBS) triblock copolymers was correlated with the blend composition, final morphology and the chemical structure of the components. RESULTS: It was determined that the charge storage capability is favoured by a finely dispersed and non‐interconnected phase and can be reduced by high polarity or low molecular weight of the blend components. Additionally, the molecular weight and the amount of styrene of the copolymers also determined the phase morphology, which in turn affected the charge retention. The use of SIBS for the ternary blends, especially in small quantities, significantly improved the charge storage. As such, 100 µm films with a surface potential of about 400 V were able to retain up to 240 V (60%) after 24 h at 130 °C. CONCLUSION: The electret behaviour of the polymer blends was influenced by a complex relationship between chemical structure, molecular weight and phase morphology. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
The supermolecular structure of binary isotactic polypropylene/atactic polystyrene (iPP/PS) injection‐molded blends were studied by wide‐angle X‐ray diffraction, differential scanning calorimetry, and optical microscopy. The combination of different methods gives a possibility of analysis of relation between the phase transformation in polypropylene and crystallization parameters. Effect of compatibilization of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) grafted with maleic anhydride (SEBS‐g‐MA) block copolymers in the iPP/PS blends on the structure, nucleation, crystal growth, solidification, and the phase morphology was analyzed. We found that the β‐crystallization tendency of polypropylene matrix can be enhanced by adding atactic polystyrene. However, the incorporation of SEBS‐g‐MA into iPP/PS blends resulted in an important decrease in β‐content of iPP. It is evident that the presence of compatibilizing agent caused a very significant reduction of the α‐spherulite growth rates and the crystal conversion as well as increases of half‐time crystallization in comparison with the iPP/PS systems. The relation between kinetic parameters of crystallization process and polymorphic structure of iPP in blend systems has been satisfactorily explained. Moreover, a strong effect of processing parameters on the β‐phase formation was observed. The results clearly show that at a higher temperature of mold and lower injection speed, the amount of β‐phase of iPP matrix slightly decreases. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

17.
Immiscible blends of recycled poly(ethylene terephthalate) (R‐PET), containing some amount of polymeric impurities, and high‐density polyethylene (R‐PE), containing admixture of other polyolefins, in weight compositions of 75 : 25 and 25 : 75 were compatibilized with selected compatibilizers: maleated styrene–ethylene/butylene–styrene block copolymer (SEBS‐g‐MA) and ethylene–glycidyl methacrylate copolymer (EGMA). The efficiency of compatibilization was investigated as a function of the compatibilizer content. The rheological properties, phase structure, thermal, and viscoelastic behavior for compatibilized and binary blends were studied. The results are discussed in terms of phase morphology and interfacial adhesion among components. It was shown that the addition of the compatibilizer to R‐PET‐rich blends and R‐PE‐rich blends increases the melt viscosity of these systems above the level characteristic for the respective binary blends. The dispersion of the minor phase improved with increasing compatibilizer content, and the largest effects were observed for blends compatibilized with EGMA. Calorimetric studies indicated that the presence of a compatibilizer had a slight affect on the crystallization behavior of the blends. The dynamic mechanical analysis provided evidence that the occurrence of interactions of the compatibilizer with blend components occurs through temperature shift and intensity change of a β‐relaxation process of the PET component. An analysis of the loss spectra behavior suggests that the optimal concentration of the compatibilizers in the considered blends is close to 5 wt %. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1423–1436, 2001  相似文献   

18.
The compatibilizing efficiency of three different compatibilizers in thermoplastic polyurethane/styrene‐co‐acrylonitrile (TPU/SAN) blends was investigated after their incorporation via melt‐mixing. The compatibilizers studied were poly‐ε‐caprolactone (PCL), a mixture of polystyrene‐block‐polycaprolactone (PS‐b‐PCL) and polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA), and a mixture of polyisoprene‐block‐polycaprolactone (PI‐b‐PCL) and polybutadiene‐block‐poly(methyl methacrylate) (PB‐b‐PMMA). All compatibilizers were synthesized by living anionic polymerization. Investigations of thermal and thermo‐mechanical properties performed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DTMA), respectively, were systematically classified into two groups, i.e. blends of TPU or SAN with 20 wt% of different compatibilizers (so‐called limit conditions) and TPU/SAN 25/75 blends with 5 wt% of different compatibilizers. In order to determine the compatibilizer's location, morphology of TPU/SAN 25/75 blends was studied with transmission electron microscopy (TEM). Different compatibilization activity was found for different systems. Blends compatibilized with PCL showed superior properties over the other blends. Polym. Eng. Sci. 44:838–852, 2004. © 2004 Society of Plastics Engineers.  相似文献   

19.
The effects of two compatibilizing agents, polystyrene–poly(ethylene butylene)–polystyrene copolymer (SEBS) and SEBS‐grafted maleic anhydride (SEBS‐g‐MAH), on the morphology of binary and ternary blends of polyethylene, polypropylene, and polyamide 6,6 were investigated with scanning electron microscopy and melt rheology measurements. The addition of the compatibilizers led to finer dispersions of the particles of the minor component and a decrease in their size; this induced a significant change in the blend morphology. The rheological measurements confirmed the increased interaction between the blend components, especially with SEBS‐g‐MAH as the compatibilizer. New covalent bonds could be expected to form through an amine–anhydride reaction. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1976–1985, 2004  相似文献   

20.
The objective of this work was to study the compatibilizer effect on polypropylene (PP) and acrylonitrile butadiene styrene (ABS) blends. The blends were coextruded and injection molded in various ratios of ABS with and without compatibilizers. Universal testing machine was employed to analyze the tensile properties of basic PP/ABS binary blends. From the mechanical testing, the impact and tensile properties of PP/ABS blend were optimized at 80/20 weight ratio. Various compatibilizers such as PP-g-MAH, SEBS-g-MAH and ethylene α-olefin copolymer were used and their comparative performance on binary blend was enumerated. Hybrid compatibilization effect was also studied and reported. However, the addition of compatibilizers showed the maximum increase in impact strength attributed to rubber toughening effect of ABS. The effect of compatibilizers on morphological properties was examined using scanning electron microscopy (SEM). SEM micrographs depicted the more efficient dispersion of ABS particles in PP matrix with the addition of compatibilizers. Further, interparticle distance analysis was carried out to evaluate the rubber toughening effect. The ABS droplet size in compatibilized PP/ABS blend was brought to minimum of 3.2 μm from 9.9 μm with the addition of compatibilizers. The melt rheology of PP/ABS blend systems was investigated through parallel plate arrangement in frequency sweep. Linear viscoelastic properties like storage (G′) and loss (G″) modulus and complex viscosity (η*) have been reported with reference to the virgin materials. It is understood that the combination of compatibilizers (hybrid compatibilizer) had a considerable effect on the overall blend properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号