共查询到19条相似文献,搜索用时 62 毫秒
1.
本文针对一类新型两阶段分布式装配柔性作业车间调度问题(DAFJSP),建立问题模型,以最小化最大完工时间为优化目标并提出一种超启发式交叉熵算法(HHCEA)进行求解.首先,设计基于工序序列、工厂分配和产品序列的三维向量编码规则和结合贪婪策略的解码规则,同时提出4种启发式方法以提高初始解的质量.然后,设计高低分层结构的HHCEA,高层为提高对搜索方向的引导性,采用交叉熵算法(CEA)学习和积累优质排列的信息,其中各排列由结合问题特点设计的11种启发式操作(即11种有效的邻域操作)构成;低层为增加在解空间中的搜索深度,将高层确定的每个排列中的启发式操作依次重复执行指定次数并在执行过程中加入基于模拟退火的扰动机制,以此作为一种新的启发式方法执行搜索.最后,通过仿真实验与算法对比验证HHCEA可有效求解DAFJSP. 相似文献
2.
针对最小化最大完工时间目标的柔性作业车间调度问题,提出了一种改进的遗传算法.在染色体编码方式上,与众多相关研究中所采用两级编码的方式不同,仅采用了基于操作的编码,极大简化了遗传操作.提出一种以最早完成时刻为规则的解码算法解决机器指派决策问题,并充分利用机器空闲时间.将算法应用在BRData基准算例上进行仿真验证.通过与... 相似文献
3.
针对多目标柔性作业车间调度问题,基于甘特图和搭积木经验进行了分析,提出了一种组合优先规则和基于此优先规则的启发式算法。组合优先规则面向完工时间、关键机床负荷和总负荷三个指标,改变规则中各数据项的比例可调整三个指标所占的比例。算法采用随机方式调整三个指标的比例,并微调最优解对应的比例,能随机产生多个高质量调度解。对比测试表明,算法求解质量更高,运行速度快,稳定,可直接用于在其他调度算法中产生初始解,或者用于动态调度。 相似文献
4.
5.
针对柔性作业车间调度问题中最大完工时间、机器最大负荷和总机器负荷三项性能指标,提出一种改进的自适应交叉和变异的混合遗传算法。在基本遗传算法染色体编码的基础上,设计一种基于海明距离的调度个体差异判别方法,并通过自适应交叉阈值和动态变异概率计算提高遗传算法整个种群调度个体的多样性,防止算法过早的进入早熟。在遗传算法进化期间,对每个调度个体的进化采用变邻域搜索算法,扩大调度个体的邻域搜索范围。最后,使用文献中相同的调度实例将本文的计算结果与其它文献中的测试结果进行比较,验证了所提出的算法的可行性和有效性。 相似文献
6.
柔性作业车间调度问题,包括路径分配和加工排序2大子问题,是组合优化理论和实际生产管理的重要研究方向。作为传统作业车间调度的扩展,柔性作业车间调度问题的内在复杂性(强NP-Hard)使得传统的最优化方法难以有效求解。文章针对以多目标权重和最优为目标的柔性作业车间调度问题,提出基于过滤定向搜索的集成启发式算法,设计改进了节点分枝策略和局部/全局评价函数,能同时解决2大子问题。通过实例仿真,对算法性能进行比较分析和评价,结果表明了算法的可行性和有效性。 相似文献
7.
针对分布式柔性作业车间调度问题的特点,提出一种改进人工蜂群算法.首先,建立以最小化最大完工时间为优化目标的分布式柔性作业车间调度优化模型;然后,改进基本人工蜂群算法以使其适用于求解分布式柔性作业车间调度问题,具体的改进包括设计一种包含三维向量的编码方案,结合问题特点针对性地设计多种策略用于种群初始化,在雇佣蜂改良搜索操作中设计多种有效的进化操作算子,并在跟随蜂搜索操作中引入基于关键路径的局部搜索算子以提升算法的局部搜索能力;最后,利用扩展柔性作业车间通用测试集得到的测试数据设计实验验证算法性能,使用正交试验法优化算法参数设置.仿真实验结果表明,改进后的人工蜂群算法能有效求解分布式柔性作业车间调度问题. 相似文献
8.
针对以最小化最大完工时间为目标函数的柔性作业车间调度问题,建立其数学模型并提出了一种两段式狼群算法加以求解.采用两段式(two-vector code)的编码方式,设计初始化种群的方式,保证初始解的质量及多样性;通过对原始狼群算法中游走行为、召唤行为、围攻行为的重新设计,解决了原始狼群算法易陷入局部最优的问题;舍弃原始... 相似文献
9.
柔性作业车间调度问题比传统的Job-shop问题更复杂也更符合实际生产实际.为了快速有效地求解这类问题,设计出一种基于综合分派规则的快速启发式调度算法.基于综合分派规则的调度算法,以一批工件总完工时间最短为目标,在调度过程中通过动态调整工件的加工优先级并为每道工序分配最适合的机器进行加工,可迅速求得满意的较优解.与其他方法进行对比实验结果证实了算法的有效性,在实际调度系统的应用中也证明了算法的实用性. 相似文献
10.
姜天华 《计算机工程与应用》2018,54(23):259-263
根据柔性作业车间的生产特点,对基本猫群优化算法进行设计和改进,提出了一种改进型猫群优化算法(Improved Cat Swarm Optimization,ICSO),用于优化车间内工件的最大完工时间。算法给出了两段式个体位置编码方式和基于启发式算法的种群初始化策略;采用自适应行为模式选择方法,使其能够有效协调算法全局和局部搜索;提出了基于多样化搜寻算子的搜寻模式,增强算法的全局搜索能力;提出了基于莱维飞行的跟踪模式,增强算法的局部搜索能力。此外,算法中还引入了跳跃机制,使算法性能能够得到进一步的改善。实验数据表明ICSO算法在求解FJSP问题方面具有一定的有效性。 相似文献
11.
分析生产车间的实际生产状况,建立了考虑工件移动时间的柔性作业车间调度问题模型,该模型考虑了以往柔性作业车间调度问题模型所没有考虑的工件在加工机器间的移动时间,使柔性作业车间调度问题更贴近实际生产,让调度理论更具现实性。通过对已有的改进遗传算法的遗传操作进行重构,设计出有效求解考虑工件移动时间的柔性作业车间调度问题的改进遗传算法。最后对实际案例进行求解,得到调度甘特图和析取图,通过对甘特图和析取图的分析验证了所建考虑工件移动时间的柔性作业车间调度问题模型的可行性和有效性。 相似文献
12.
针对以生产周期、生产成本、设备利用率为目标的柔性作业调度问题,基于混合遗传算法提出了一种新的优化求解方法。首先建立了该类问题的调度模型,基于工序编码的染色体决定了工序调度的优先级;利用无量纲的标准化处理方法统一目标量纲;然后,利用层次分析法将多目标问题转化为单目标问题,同时为了保证算法的收敛性,在基本遗传算法框架的基础上集成了禁忌搜索算法,从而延缓或避免了早熟收敛的发生。最后通过实验仿真,证明提出的方法可以有效解决该类多目标柔性作业调度问题。 相似文献
13.
作业处理中的柔性使得作业调度更为灵活,作业中操作的执行顺序满足拓扑排序是作业调度的前提。是否允许没有优先关系的操作在不同的机器上同时执行是区分串行和并行调度的条件。文中以共生进化算法求解一个复杂的作业调度模型为例,给出了算法实现串行调度和并行调度的具体区别,并给出了串行和并行调度的结果。结果表明,并行相对于串行对算法效率的提高与柔性大小相关,与作业的规模成反比。 相似文献
14.
针对传统粒子群优化(PSO)算法在求解柔性作业车间调度问题中的不足,提出了基于自适应参数与混沌搜索的粒子群优化算法。对粒子群算法中的惯性系数等参数采用基于迭代搜索而自适应调整的方式,使粒子在初期以较大惯性进行大范围搜索,后期逐渐减小惯性而转入精细搜索。这种方法改变了传统粒子群算法在求解过程中的盲目随机与求解精度不高的问题;同时,通过在局部搜索过程中引入混沌技术,扩大对最优解的寻找范围,以此避免算法陷入局部最优,有效提高算法的全局寻优能力。实验结果表明,基于自适应参数与混沌搜索的粒子群优化算法在求解柔性作业车间调度问题(FJSP)时能够获得更优粒子适应度平均值及更好的优化目标。所提算法对求解柔性作业车间调度问题可行,有效。 相似文献
15.
针对高维多目标柔性作业车间调度问题(MaOFJSP),提出了一种新型帝国竞争算法(ICA)以同时最小化最大完成时间、最大拖期、最大机器负荷和总能耗,该算法采用新方法构建初始帝国使得大多数殖民国家分配数量相近的殖民地,引入殖民国家的同化,并应用新的革命策略和帝国竞争方法以获得高质量解.最后通过大量实验测试ICA新策略对其性能的影响并将ICA与其他算法对比,实验结果表明新型ICA在求解MaOFJSP方面具有较强的优势. 相似文献
16.
改进离散粒子群算法求解柔性流水车间调度问题 总被引:1,自引:0,他引:1
针对以最小化完工时间为目标的柔性流水车间调度问题(FFSP),提出了一种改进离散粒子群(DPSO)算法.所提算法重新定义粒子速度和位置的相关算子,并引入编码矩阵和解码矩阵来表示工件、机器以及调度之间的关系.为了提高柔性流水车间调度问题求解的改进离散粒子群算法的初始群体质量,通过分析初始机器选择与调度总完工时间的关系,首次提出一种基于NEH算法的最短用时分解策略算法.仿真实验结果表明,该算法在求解柔性流水车间调度问题上有很好的性能,是一种有效的调度算法. 相似文献
17.
柔性作业车间调度问题是经典作业车间调度问题的扩展,它允许工序在可选加工机器集中任意一台上加工,加工时间随加工机器不同而不同。针对柔性作业车间调度问题的特点,提出一种基于约束理论的局部搜索方法,对关键路径上的机器的负荷率进行比较,寻找瓶颈机器,以保证各机器之间的负荷平衡。为了克服传统遗传算法早熟和收敛慢的缺点,设计多种变异操作,增加种群多样性。为了更好保留每代中的优良解,设计了基于海明距离的精英解保留策略。运用提出的算法求解基准测试问题,验证了算法的可行性和有效性。 相似文献
18.
As an extension of the classical job shop scheduling problem, flexible job shop scheduling problem (FJSP) is considered as a challenge in manufacturing systems for its complexity and flexibility. Meta-heuristic algorithms are shown effective in solving FJSP. However, the multiple critical paths issue, which has not been formally discussed in the existing literature, is discovered to be a primary obstacle for further optimization by meta-heuristics. In this paper, a hybrid Jaya algorithm integrated with Tabu search is proposed to solve FJSP for makespan minimization. Two Jaya operators are designed to improve solutions under a two-vector encoding scheme. During the local search phase, three approaches are proposed to deal with multiple critical paths and have been evaluated by experimental study and qualitative analyses. An incremental parameter setting strategy and a makespan estimation method are employed to speed up the searching process. The proposed algorithm is compared with several state-of-the-art algorithms on three well-known FJSP benchmark sets. Extensive experimental results suggest its superiority in both optimality and stability. Additionally, a real world scheduling problem, including six instances with different scales, is applied to further prove its ability in handling large-scale scheduling problems. 相似文献
19.
针对低碳柔性作业车间调度问题(flexible job shop scheduling problem,FJSP),提出一种新型蛙跳算法(shuffled frog leaping algorithm,SFLA)以总碳排放最小化,该算法运用记忆保留搜索所得一定数量的最优解,并采取基于种群和记忆的种群划分方法,应用新的搜索策略如全局搜索与局部搜索的协调优化以实现模因组内的搜索,取消种群重组使算法得到简化.采用混合遗传算法和教–学优化算法作为对比算法,大量仿真对比实验验证了SFLA对于求解低碳FJSP具有较强的搜索能力和竞争力. 相似文献